MS2665C/67C/68C Spectrum Analyzer Operation Manual Vol. 1 (Basic Operating Instructions)

15th Edition

For safety and warning information, please read this manual before attempting to use the equipment.

Keep this manual with the equipment.

ANRITSU CORPORATION

Document No.: M-W1335AE-15.0

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

Symbols used in manual

DANGER

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

WARNING **^**

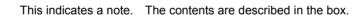
This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

CAUTION

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.


This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.

This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.

This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.

These indicate that the marked part should be recycled.

MS2665C/67C/68C

Spectrum Analyzer

Operation Manual Vol. 1 (Basic Operating Instructions)

28 November 1997 (First Edition)

12 December 2007 (15th Edition)

Copyright © 1997-2007, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice.

Printed in Japan

WARNING **^**

 ALWAYS refer to the operation manual when working near locations at which the alert mark shown on the left is attached. If the advice in the operation manual is not followed there is a risk of personal injury or reduced equipment performance. The alert mark shown on the left may also be used with other marks and descriptions to indicate other dangers.

2. IEC 61010 Standard

The IEC 61010 standard specifies four categories to ensure that an instrument is used only at locations where it is safe to make measurements. This instrument is designed for measurement category I (CAT I). DO NOT use this instrument at locations specified as category II, III, or IV as defined below.

Measurement category I (CAT I):

Secondary circuits of a device that is not directly connected to a power outlet.

Measurement category II (CAT II):

Primary circuits of a device that is directly connected to a power outlet, e.g., portable tools or home appliance.

Measurement category III (CAT III):

Primary circuits of a device (fixed equipment) to which power is supplied directly from the distribution panel, and circuits running from the distribution panel to power outlet.

Measurement category IV (CAT IV):

Building service-line entrance circuits, and circuits running from the service-line entrance to the meter or primary circuit breaker (distribution panel).

Electric Shock

3. To ensure that the instrument is earthed, always use the supplied 3-pin power cord, and insert the plug into an outlet with an earth terminal. If power is supplied without earthing the equipment, there is a risk of receiving a severe or fatal electric shock or causing damage to the internal components.

WARNING

Repair

4. This equipment cannot be repaired by the operator. DO NOT attempt to remove the equipment covers or unit covers or to disassemble internal components. Only qualified service personnel with a knowledge of electrical fire and shock hazards should service this equipment. There are high-voltage parts in this equipment presenting a risk of severe injury or fatal electric shock to untrained personnel. In addition, there is a risk of damage to precision components.

Calibration

5. The performance-guarantee seal verifies the integrity of the equipment. To ensure the continued integrity of the equipment, only Anritsu service personnel, or service personnel of an Anritsu sales representative, should break this seal to repair or calibrate the equipment. If the performance-guarantee seal is broken by you or a third party, the performance of the equipment cannot be guaranteed. Be careful not to break the seal by opening the equipment or unit covers.

Falling Over

- 6. This equipment should always be positioned in the correct manner. If the cabinet is turned on its side, etc., it will be unstable and may be damaged if it falls over as a result of receiving a slight mechanical shock.
 - Always set up the equipment in a position where the power switch can be reached without difficulty.

- **Battery Fluid**
- 7. DO NOT short the battery terminals and never attempt to disassemble the battery or dispose of it in a fire. If the battery is damaged by any of these actions, the battery fluid may leak. This fluid is poisonous. DO NOT touch the battery fluid, ingest it, or get in your eyes. If it is accidentally ingested, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, rinse them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.
- 8. This instrument uses a Liquid Crystal Display (LCD). DO NOT subject the instrument to excessive force or drop it. If the LCD is subjected to strong mechanical shock, it may break and liquid may leak. This liquid is very caustic and poisonous.

DO NOT touch it, ingest it, or get in your eyes. If it is ingested accidentally, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, rinse them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.

LCD

CAUTION /

Fuse Replacement

1. Always remove the mains power cable from the power outlet before replacing blown fuses. There is a risk of electric shock if fuses are replaced with the power cable connected. Always use new fuses of the type and rating specified on the rear panel of the instrument. There is a risk of fire if a fuse of a different rating is used.

T5A indicates a time-lag fuse.

Cleaning

- 2. Keep the power supply and cooling fan free of dust.
 - Clean the power inlet regularly. If dust accumulates around the power pins, there is a risk of fire.
 - Keep the cooling fan clean so that the ventilation holes are not obstructed. If the ventilation is obstructed, the cabinet may overheat and catch fire.

Check Terminal

- 3. Never input a signal of more than the indicated value between the measured terminal and ground. Input of an excessive signal may damage the equipment.
 - · Maximum DC voltage ratings: RF Input DC 0 V
 - · Maximum AC power ratings: RF Input +30 dBm
 - NEVER input a >+30 dBm and >DC 0 V power to RF Input.
 - Excessive power may damage the internal circuits.

CAUTION \wedge

Replacing Memory Back-up Battery

This equipment uses a Poly-carbomonofluoride lithium battery to backup the memory. This battery must be replaced by service personnel when it has reached the end of its useful life; contact the Anritsu sales section or your nearest representative.

Note: The battery used in this equipment has a maximum useful life of 7 years. It should be replaced before this period has elapsed.

External Storage Media

This equipment uses memory cards as external storage media for storing data and programs.

If this media is mishandled or becomes faulty, important data may be lost. To prevent this chance occurrence, all important data and programs should be backed-up.

Anritsu will not be held responsible for lost data.

Pay careful attention to the following points.

- Never remove the memory card from the instrument while it is being accessed.
- The memory card may be damaged by static electric charges.
- The back-up battery in SRAM memory cards has a finite life.
 Replace the battery periodically. For details, refer to the explanation on the memory card later in this manual.
- Anritsu has thoroughly tested all external storage media shipped with this instrument. Users should note that external storage media not shipped with this instrument may not have been tested by Anritsu, thus Anritsu cannot guarantee the performance or suitability of such media.

Use in a residential environment

This instrument is designed for an industrial environment. In a residential environment this instrument may cause radio interference in which case the user may be required to take adequate measures.

Equipment Certificate

Anritsu Corporation certifies that this equipment was tested before shipment using calibrated measuring instruments with direct traceability to public testing organizations recognized by national research laboratories, including the National Institute of Advanced Industrial Science and Technology, and the National Institute of Information and Communications Technology, and was found to meet the published specifications.

Anritsu Warranty

Anritsu Corporation will repair this equipment free-of-charge if a malfunction occurs within one year after shipment due to a manufacturing fault, under the condition that this warranty is void when:

- The fault is outside the scope of the warranty conditions described in the operation manual.
- The fault is due to mishandling, misuse, or unauthorized modification or repair of the equipment by the customer.
- The fault is due to severe usage clearly exceeding normal usage.
- The fault is due to improper or insufficient maintenance by the customer.
- The fault is due to natural disaster including fire, flooding, earthquake,
- The fault is due to use of non-specified peripheral equipment, peripheral parts, consumables, etc.
- The fault is due to use of a non-specified power supply or in a non-specified installation location.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation shall assume no liability for injury or financial loss of the customer due to the use of or a failure to be able to use this equipment.

Anritsu Corporation Contact

In the event that this equipment malfunctions, contact an Anritsu Service and Sales office. Contact information can be found on the last page of the printed version of this manual, and is available in a separate file on the CD version.

Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals need to be broken/shredded so as not to be unlawfully used for military purpose.

Crossed-out Wheeled Bin Symbol

Equipment marked with the Crossed-out Wheeled Bin Symbol complies with council directive 2002/96/EC (the "WEEE Directive") in European Union.

For Products placed on the EU market after August 13, 2005, please contact your local Anritsu representative at the end of the product's useful life to arrange disposal in accordance with your initial contract and the local law.

Front Panel Power Switch

To prevent malfunction caused by accidental touching, the front power switch of this equipment turns on the power if it is pressed continuously for about one second in the standby state. If the switch is pressed continuously for one second in the power-on state, the equipment enters the standby state.

In the power-on state, if the power plug is removed from the outlet, then reinserted into it, the power will not be turned on. Also, if the lines is disconnected due to momentary power supply interruption or power failure, the power will not be turned on (enters the standby state) even if the line is recovered.

This is because this equipment enters the standby state and prevents incorrect data from being acquired when the line has to be disconnected and reconnected.

For example, if the sweep time is 1,000 seconds and data acquisition requires a long time, momentary power supply interruption (power failure) might occur during measurement and the line could be recovered automatically to power-on. In such a case, the equipment may mistake incorrect data for correct data without recognizing the momentary power supply interruption.

If this equipment enters the standby state due to momentary power supply interruption or power failure, check the state of the measuring system and press the front power switch to restore power to this equipment.

Further, if this equipment is built into a system and the system power has to be disconnected then reconnected, the power for this equipment must also be restored by pressing the front power switch.

Consequently, if this equipment is built into remote monitoring systems that use MODEMs, the standby function of this equipment must be modified.

ABOUT DETECTION MODE

This instrument is a spectrum analyer which uses a digital storage system. The spectrum analyzer makes level measurements in frequency steps obtained by dividing the frequency span by the number of measurement data points (501). This method of measurement cannot detect the signal peak level if the spectrum of a received signal is narrower than these frequency steps.

To resolve this problem, this instrument usually operates in positive peak detection mode and normal detection mode. In the positive peak detection mode, the highest level within the frequency range between the sample points can be held and traced. In the normal detection mode, both the positive peak and the negative peak can be traced.

Positive peak detection mode should be used for almost all measurements including normal signal level measurement, pulsed noise analysis, and others. <u>It is impossible to measure the signal level accurately in sample detection mode or in negative peak detection mode.</u>

Use of sample detection mode is restricted to random noise measurement, occupied frequency bandwidth measurement for analog communication systems, and adjacent-channel leakage power measurement, etc.

	Measurement	Item
•	Normal signal	POS PEAK
•	Random noise	SAMPLE
•	Pulsed noise	NORMAL (POSI-NEG)
•	Occupied frequency bandwidth, adjacent-channel leakage power	SAMPLE
	(for analog communication systems)	

• Occupied frequency bandwidth, adjacent-channel leakage powerPOS PEAK or SAMPLE (for digital communication systems)

When a detection mode is specified as one of the measurement methods, make the measurement in the specified detection mode.

CE Conformity Marking

Anritsu affixes the CE conformity marking on the following product(s) in accordance with the Council Directive 93/68/EEC to indicate that they conform to the EMC and LVD directive of the European Union (EU).

CE marking

1. Product Model

Model: MS2665C/MS2667C/MS2668C Spectrum

Analyzer

2. Applied Directive

EMC: Directive 2004/108/EC LVD: Directive 2006/95/EC

3. Applied Standards

• EMC: Emission: EN 61326-1: 2006 (Class A) Immunity: EN 61326-1: 2006 (Table 2)

	Performance Criteria*
IEC 61000-4-2 (ESD)	В
IEC 61000-4-3 (EMF)	A
IEC 61000-4-4 (Burst)	В
IEC 61000-4-5 (Surge)	В
IEC 61000-4-6 (CRF)	A
IEC 61000-4-8 (RPFMF)	A
IEC 61000-4-11 (V dip/short)	В, С

*: Performance Criteria

- A: During testing, normal performance within the specification limits.
- B: During testing, temporary degradation, or loss of function or performance which is self-recovering.
- C: During testing, temporary degradation, or loss of function or performance which requires operator intervention or system reset occurs.

Harmonic current emissions:

EN 61000-3-2: 2006 (Class A equipment)

• LVD: EN 61010-1: 2001 (Pollution Degree 2)

4. Authorized representative

Name: Loic Metais

European Quality Manager ANRITSU S.A. France

Address, city: 16/18 Avenue du Québec SILIC 720 Zone de

Courtaboeuf

91951 Les Ulis Cedex

Country: France

C-tick Conformity Marking

Anritsu affixes the C-tick mark on the following product(s) in accordance with the regulation to indicate that they conform to the EMC framework of Australia/New Zealand.

C-tick marking

1. Product Model

Model: MS2665C/MS2667C/MS2668C Spectrum

Analyzer

2. Applied Standards

EMC: Emission: EN 61326-1: 2006 (Class A equipment)

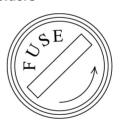
Power Line Fuse Protection

For safety, Anritsu products have either one or two fuses in the AC power lines as requested by the customer when ordering.

Single fuse: A fuse is inserted in one of the AC power lines.

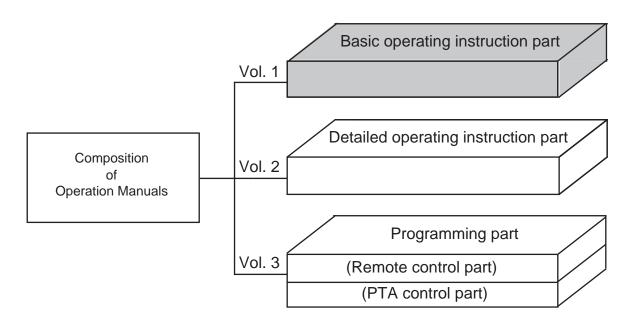
Double fuse: A fuse is inserted in each of the AC power lines.

Example 1: An example of the single fuse is shown below:


Fuse Holder

Example 2: An example of the double fuse is shown below:

Fuse Holders



ABOUT THIS MANUAL

(1) Composition of MS2665C/67C/68C Operation Manuals

The MS2665C/67C/68C Spectrum Analyzer operation manuals of the standard type are composed of the following three documents. Use them properly according to the usage purpose.

Basic operating instruction part: Basic Operating Instructions: Provides information on the

MS2665C/67C/68C outline, preparation before use, panel description, basic operation, soft-key menu and performance tests.

Detailed operating instruction part: Detailed Operating Instructions: Provides information on the detailed

panel operating instructions on MS2665C/67C/68C that expand on the basic operation and soft-key menu in the Basic Operating

Instruction Part.

Programming part: Composed of the Remote Control Part and PTA Control Part. The

Remote Control Part provides information on RS-232C remote control, GPIB remote control and sample programs, while the PTA

Control Part describes about PTA operation and PTL commands.

TABLE OF CONTENTS

For Safety	iii
ABOUT THIS	S MANUAL I
SECTION 1	GENERAL 1-1
	Product Outline
	Composition of Operation Manual
	Equipment Configuration1-5
	Standard configuration1-5
	Options 1-6
	Optional Accessories and Peripherals
	Specifications
SECTION 2	PREPARATIONS BEFORE USE
	IInstallation Site and Environmental Conditions
	Locations to be avoided2-3
	Fan clearance 2-3
	Safety Measures
	Power-on
	Input level to RF Input2-5
	Connector of RF Input2-5
	Installation
	Rack mounting2-6
	Preparations before Power-on2-7
	Protective grounding2-8
	Replacing fuse2-9
	Precaution for Handling Memory Card2-11
SECTION 3	PANEL DESCRIPTION
	Table of Front and Rear Panel Features

SECTION 4	SOFT-KEY MENU	4-1
	Soft-key Menu List	4-4
	Menu Tree	4-8
SECTION 5	BASIC OPERATION PROCEDURE	5-1
	Signal Display	5-3
	Turn the power on	5-3
	Execute automatic calibration	5-4
	Set the signal to the center of the screen	5-4
	Enlarge and display the signal	5-5
	Marker Operation	5-6
	Check of the zone marker function	
	The "marker \rightarrow CF" function check	
	"Measure" Function Check	5-8
	Screen Hard Copy	5-9
	Initialization (Restore shipment state)	5-10
SECTION 6	PERFORMANCE TESTS	6-1
	Requirement for Performance Tests	6-3
	Instruments Required for Performance Test	6-4
	Performance Test	6-6
	Reference oscillator frequency stability	6-7
	Frequency readout accuracy	6-9
	Frequency span readout accuracy	6-14
	Resolution bandwidth (RBW) and selectivity	6-18
	Sideband phase noise	6-24
	Frequency measurement accuracy	6-27
	Amplitude display linearity	6-29
	Frequency response	6-33
	Reference level accuracy	6-39
	Average noise level	6-42
	Second harmonic distortion	6-47
	Resolution bandwidth (RBW) switching uncertainty	6-50
	Input attenuator (RF ATT) switching uncertainty	
	Sweep time and time span accuracy	6-56
	Service	

SECTION 7	STORAGE AND TRANSPORTATION	7-1
	Cleaning Cabinet	7-3
	Storage Precautions	7-4
	Precautions before storage	7-4
	Recommended storage precautions	7-4
	Repacking and Transportation	7-5
	Repacking	
	Transportation	7-5
APPENDIX A	FRONT AND REAR PANEL LAYOUT	A-1
APPENDIX E	BLOCK DIAGRAM	B-1
APPENDIX C	PERFORMANCE TEST RECORD	

SECTION 1

GENERAL

This section outlines the MS2665C/67C/68C Spectrum Analyzer and explains the composition of this manual, the configuration of the MS2665C/67C/68C with the standard accessories, the options, the optional accessories, and peripherals for expanding the MS2665C/67C/68C capabilities, and the MS2665C/67C/68C specifications.

TABLE OF CONTENTS

Product Outline	1-3
Composition of Operation Manual	1-4
Equipment Configuration	1-5
Standard configuration	1-5
Options	1-6
Optional Accessories and Peripherals	1-7
Specifications	1-9

SECTION 1 GENERAL

Product Outline

The MS2665C/67C/68C spectrum analyzer (henceforth called "this unit") is a portable type color LCD spectrum analyzer suited for signal analyses of radio equipment where the efficiency of frequency usage is increased and equipment are increasingly speeded and digitized.

Excellent in basic performance such as C/N, distortion, frequency/level accuracy, and easily operable following the display of the soft-key menu screen.

Excellent cost performance with rich options to cope with various applications.

Equipped with high-accuracy calibration signals and an attenuator, it can accurately calibrate switching errors of LOG/LIN scales, resolution bandwidth, reference level, etc. Since frequency response is corrected by built-in calibration data, it allows high-accuracy level measurement for a wide range.

As the switching of waveforms between frequency domain and time domain can be done by a touch and two waveforms are simultaneously displayed, signal analyses of both domains can be done efficiently. Moreover, our original zone marker function and multi-marker function (up to 10 markers) are also special mention.

This unit provides the MEASURE function that can perform measurement of various applications without requiring the intervention of external controllers. Therefore, the performance evaluation of radio equipment can be easily done in terms of frequency, noise, occupied frequency bandwidth, leak power from neighboring channels, etc.

In addition, as the template measurement of burst mean power and burst waveform are also available, it is suited for evaluating the performance of digital radio equipment.

Application

This unit is useful for the production, building and maintenance of electronic equipment and devices in the following fields.

- AM/FM radio equipment
- Digital cellular telephone/cordless telephone
- Satellite broadcasting, CATV and TV equipment
- Microwave equipment

Composition of Operation Manual

This Operation Manual is composed of 7 sections and appendixes A, B and C. The profile of each section is shown below.

Section composition	Explanation
SECTION 1 GENERAL	Product outline, standard configuration, options, applicable parts, peripheral devices, and specifications
SECTION 2 PREPARATIONS BEFORE USE	Operations to be done before applying power
SECTION 3 PANEL DESCRIPTION	Description about the front and rear panels
SECTION 4 SOFT-KEY MENU	Description using a soft-key menu
SECTION 5 BASIC OPERATION PROCEDURE	Basic operation procedures for operation guide
SECTION 6 PERFORMANCE TESTS	Tests used for checking performance
SECTION 7 STORAGE AND TRANSPORTATION	Cautions on storage and transportation
APPENDIX A	FRONT AND REAR PANEL LAYOUT
APPENDIX B	BLOCK DIAGRAM
APPENDIX C	PERFORMANCE TEST RECORD

Equipment Configuration

This paragraph describes the configuration of the MS2665C/67C/68C Spectrum Analyzer with standard accessories and the various options to expand the functions.

Standard configuration

The table below shows the configuration of the MS2665C/67C/68C spectrum analyzer with the standard accessories.

Standard Composition

Item	Model/Order NO.	Name	Qty.	Remarks
	MS2665C/			
Main instrument	MS2667C/	Spectrum Analyzer	1	
	MS2668C			
		Power cord	1	
Accessories	F0013	Fuse	2	T5 A 250 V
	W1335AE	Operation manual	1	

Options

The table below shows the options for the MS2665C/2667C which are sold separately.

Model-†Order No.†	Name	Remarks	
MS2665C-01	Reference crystal oscillator	stability ≤2 ×10 ⁻⁸ /day	
MS2665C/2667C/	Narrow resoluion bandwidth	30 Hz/100 Hz, 300 Hz	
MS2668C-02	None and the second sec	10 H- 20 H- 100 H- 200 H-	
MS2667C/2668C-03	Narrow resoluion bandwidth	10 Hz, 30 Hz, 100 Hz, 300 Hz	
MS2665C/2667C/	High-speed time domain	1.25 us/div	
2668C-04	sweep	1.25 μs/div	
MS2665C/2667C/	Toi a con/Cota ainesit	Due toil and and to a this are suitable	
2668C-06	Trigger/Gate circuit	Pre-trigger and post trigger avilable	
MS2665C/2667C/	AM/FM demodulator	Output to loudspeaker or earphone	
2668C-07	(Sound monitor)	connector	
MS2665C/2667C/		N	
2668C-10	Centronics interface	Not possible when GPIB installed	
MS2665C-14	PTA Parallel I/O	Controlling external equipment from PTA. Not possible when Option 10 installed	
MS2665C/2667C/ 2668C-15	Sweep signal output	X, Z	

[†] Please specify the model/order number, name, and quantity when ordering.

Optional Accessories and Peripherals

The following table shows the optional accessories and peripherals for MS2665C/67C/68C which are all sold separately.

Optional Accesories (1/2)

Model † - Order No. †	Name	Remarks
J0561	Coaxial cord, 1 m	N-P-5W • 5D-2W • N-P-5W
J0104A	Coaxial cord, 1 m	BNC-P • RG-55/U • N-P-5W
J0322B	Coaxial cord, 1 m	SUCOFLEX104, 11SMA-11SMA
DGM010-02000EE	Coaxial cord, 2 m	N-P • N-P Junkohsya products.
DGM024-02000EE	Coaxial cord, 2 m	N-P • N-P Low loss Junkohsya products.
CSCJ-256K-SM	256 kB memory card	Meets PCMCIA Ver. 2.0 Type I
CSCJ-512K-SM	512 kB memory card	Meets PCMCIA Ver. 2.0 Type I
CSCJ-001M-SM	1024 kB memory card	Meets PCMCIA Ver. 2.0 Type I
CSCJ-002M-SM	2048 kB memory card	Meets PCMCIA Ver. 2.0 Type I
B0329G	Protective cover	3/4 MW4U
B0395A	Rack mount kit (IEC)	
B0395B	Rack mount kit (JIS)	
34AKNF50	Coaxial adaptor	K-P • N-J, DC-20 GHz
J0004	Coaxial adaptor	N-P • SMA-J (HRM554S)
J0055	Coaxial adaptor (NC-P • BNC-J)	
J0076	Coaxial adaptor (NC-P • F-J)	
B0391A	Carring case (hard type)	With casters, for MS2665C
B0391B	Carring case (hard type)	Without casters, for MS2665C
B0421A	Carring case (hard type)	With casters, for MS2667C/68C
B0421B	Carring case (hard type)	Without casters, for MS2667C/68C
MP612A	RF Fuse Holder	DC to 1000 MHz, 50Ω (N)
MP613A	Fuse Element	For MP612A
MA8601A	DC Block Adaptor	50Ω (10 kHz to 2.2 GHz)
MA2507A	DC Block Adaptor	50Ω (9 kHz to 3.0 GHz)
J0805	DC Block Adaptor	50Ω (10 kHz to 18 GHz)
MP1621A	$50 \Omega \rightarrow 75 \Omega$ Impedance	9 kHz to 3 GHz, with DC block capacitor
	Transformer	(allowable voltage: 100 V)
MP614A	$50 \Omega \longleftrightarrow 75 \Omega$ Impedance	10 to 1200 MHz (transformer type)
	Transformer	
J0121	Coaxial cord, 1 m	NC-P-3W • 3C-2WS • NC-P-3W
J0308	Coaxial cord, 1 m	BNC-P • 3C-2WS • NC-P-3W
J0063	Fixed attenuator for high power	30 dB (10 W, DC to 12.4 GHz)
J0078	Fixed Foxed Power for high power	20 dB (10 W, DC to 18 GHz)
J0395	Fixed attenuator for high power	30 dB (10 W, DC to 9 GHz)
MP640A	Branch	40 dB, DC to 1700 MHz
MP654A	Branch	30 dB, 0.8 to 3 GHz
MP520A	CM Directional Coupler	25 to 500 MHz, 75 Ω (NC)
MP520B	CM Directional Coupler	25 to 1000 MHz, 75 Ω (NC)
MP520C	CM Directional Coupler	25 to 500 MHz, 50 Ω (N)
MP520D	CM Directional Coupler	25 to 1000 MHz, 50 Ω (N)
MP526A	High Pass Filter	60-MHz band
MP526B	High Pass Filter	150-MHz band
MP526C	High Pass Filter	250-MHz band
MP526D	High Pass Filter	400-MHz band
MP526G	High Pass Filter	27-MHz band

[†] Please specify the model / order number, name, and quantity when ordering.

Optional Accesories (2/2)

Model · Order No.	Name	Remarks
J0064A	Coaxial to 7 GHz band waveguide	5.8 to 8.6 GHz, BRJ-7 · N-J
	adaptor	
J0064C	Coaxial to 10 GHz band waveguide	8.2 to 12.4 GHz , BRJ-10 · N-J
	adaptor	
J0007	GP-IB Cable	408JE-101
J0008	GP-IB Cable	408JE-102
J0742A	RS232C Cable	D-sub 25 pins (straight)
J0743A	RS232C Cable	For IBM PC/AT compatible, D-sub 9 pins (cross)

Peripheral Equipment

External Mixer (Oleson Microwave Labs Products)

Model · Order No. †	Name †	Remarks †
M42HW	Equipmentnal Mixer	18 to 26.5 GHz
M28HW	External Mixer	26.5 to 40 GHz
M22HW	External Mixer	33 to 50 GHz
M19HW	External Mixer	40 to 60 GHz
M15HW	External Mixer	50 to 75 GHz
M12HW	External Mixer	60 to 90 GHz
M10HW	External Mixer	75 to 110 GHz

[†] Please specify the model/order number, name, and quantity when ordering.

Specifications

Except where noted otherwise, specified values are obtained ofter warming up the equipment for 30 minutes at constant ambient temperature and when then perfoming calibration. The typical values are given for reference, and are not guaranteed.

	Model	MS2665C			
	Frequency range	9kHz to 21.2GHz			
		band frequency range harmonic order of the mixer (N)			
		0 0 to 3.2GHz 1			
		1– 2.92 to 6.5GHz 1			
	Frequency band	1+ 6.4 to 8.1GHz 1			
		2+ 8.0 to 15.3GHz 2			
		3+ 15.2 to 21.2GHz 3			
	Frequency setting resolution	(1×N) Hz (Frequency domain), (100×N) Hz (Time domain)			
	Pre-selector range	2.92GHz to 21.2GHz (band1-, 1+, 2+, 3+)			
	The selector range	±(frequency readout×reference frequency accuracy + span×span accuracy + 100Hz×N)			
	Frequency readout accuracy	*Span: ≥10kHz×N, after calibration			
	Marker frequency readout accuracy	Normal: Same as frequency readout accuracy, Delta: Same asfrequency span accuracy			
>		Resolutions: 1Hz, 10Hz, 10Hz, 1kHz			
Frequency	Frequency counter	Accuracy: Frequency readout×reference frequency accuracy ±1LSD (when S/N is 20dB)			
<u>e</u>		Setting range: 0Hz, 1kHz to 21.3GHz			
호	Frequency span	Accuracy: $\pm 2.5\%$ (span ≥ 10 kHz×N),			
<u>1</u> .e		$\pm 5\%$ (span ≤ 10 kHz×N, with Option02)			
۱۳		Setting range: 1kHz, 3kHz, 10kHz, 30kHz, 100kHz, 300kHz, 1MHz, 3MHz (manually or automatically			
		settable according to frequency span)			
		*Option02: 30Hz, 100Hz, 300Hz are added.			
	Resolution bandwidth (RBW)	Measurements of such as noise, C/N, adjacent channel leakage power by measure function are executed			
	(3dB BW)	with the caluculated equivalent noise band width of the resolution band width.			
		Accuracy: ±20% (RBW=1kHz to 1MHz), ±30% (RBW=3MHz)			
		Selectivity (60dB:3dB): ≤15:1			
	Video bandwidth (VBW)	1Hz to 3MHz (1-3 sequence), off *manually or automatically settable according to resolution bandwidth			
	video bandwidth (VBW)	Noise sidebands: \leq -95dBc/Hz+20LogN (1MHz to 21.2GHz, 10kHz offset)			
		Residual FM: \(\leq 20\text{Hzp-p/0.1s}\) (1GHz, span=0Hz)			
	Signal purity and stability	Frequency drift: ≤ 200 Hz×N/min (span ≤ 10 kHz×N, sweep time ≤ 100 s)			
		*After 1-hour warm-up at constant ambient temparature			
		Frequency: 10MHz			
		Aging rate: $\leq 2 \times 10^{-6}$ /year (typical); Option01: $\leq 1 \times 10^{-7}$ /year, 2×10^{-8} /day			
	Reference oscillator	Temparature characterristics: $\le 1 \times 10^{-5}$ (typical, 0 to 50° C); Option01: $\le 5 \times 10^{-8}$ (0 to 50° C)			
		*Reference frequency at 25°C			
		Measurement range: Average noise level to +30dBm			
		Maximum input level: +30dBm (CW average power, RF ATT: ≥10dB), ±DC 0 V			
		Average noise level:			
		≤-115dBm (1MHz to 1GHz, band 0), ≤-115dBm + 1.5f [GHz] dB (1 to 3.1GHz, band 0)			
	Level measurement	≤–110dBm (2.92 to 8.1GHz, band 1), ≤–102dBm (8.0 to 15.3GHz, band 2)			
		≤–98dBm (15.2 to 21.2GHz, band 3)			
		*Resolution bandwidth: 1kHz, video bandwidth: 1Hz, input attenuator: 0dB			
		Residual response: ≤–90dBm (RF ATT: 0dB, input: 50Ω termination, 1MHz to 8.1GHz)			
		Setting range			
Ф		Log scale: -100 to +30dBm, or equivalent level, Linear scale: 224µV to 7.07V			
Amplitude		Unit			
∄		Log scale: dBm, dBµV, dBmV, dBµV (e.m.f), W, Linear scale: V			
lα	Reference level	Reference level accuracy:			
ا≱ا		±0.4dB (-49.9dBm to 0dBm), ±0.75dB (-69.9 to -50dBm, 0.1 to +30dBm), ±1.5dB (-80 to -70dBm)			
'		*After calibration at 100MHz frequency, span 1MHz			
1		(when RF ATT, RBW, VBW and sweep time set to AUTO)			
1		RBW switching uncertainty:			
		±0.3dB (1kHz to 1MHz), ±0.4dB (1kHz to 3MHz)			
		*After calibration, referenced to RBW 3kHz			
1		Input attenuator (RF ATT)			
		Setting range: 0 to 70dB (10dB steps)			
1		*Manual settable or, automatically settable according to reference level			
		Accuracy: ±0.3dB (0 to 50dB), ±1dB (0 to 70dB)			
		*After calibration, referenced to frequecy 100MHz, input attenuator 10dB			
$\overline{}$,, ,,,,, , ,, ,, ,, ,,			

	Model	MS2665C
		Relative:
		±1.5dB (9kHz to 3.2GHz, band 0, RF ATT 10dB), ±1.0dB (100kHz to 3.2GHz, band 0, RF ATT 10dB)
	Frequency response	±1.5dB (2.92 to 8.1GHz, band 1, RF ATT 10dB), ±3.0dB (8.0 to 15.3GHz, band 2, RF ATT 10dB)
		±4.0dB (15.2 to 21.2GHz, band 3, RF ATT 10dB)
		*After pre-selector tuning at band 1, 2, 3, referenced to midpoint between highest and lowest frequency
		deviation in each band.
		Absolute:
		±5.0dB (9kHz to 21.2GHz, RF ATT 10dB, referenced to 100MHz)
		*At band 1, 2, 3, after pre-selector tuning
		Scale: 10div
		Log scale: 10, 5, 2, 1dB/div
		Linear scale: 10, 5, 2, 1%/div
		Fidelity (after calibration)
	Scale Fidelity	Log scale: ±0.4dB (0 to -20dB), ±1.0dB (0 to -70dB), ±1.5dB (0 to -85dB), ±2.5dB (0 to -90dB)
1 ~		Linear scale: ±4% of reference level
۱ĕ		Marker level resolution
1.≅		Log scale: 0.01dB
ᅵᅙ		Linear scale: 0.02% of reference level
Amplitude		2nd harmonic distortion:
~		≤-60dBc (10 to 200MHz, band 0, mixer level: -30dBm)
		≤-70dBc(0.2 to 1.55GHz, band 0, mixer level: -30dBm)
		≤-100dBc or noise level (1.46 to 10.6GHz, band 1, 2, 3, mixer level: -10dBm)
		Two signal 3rd order intermodulation distortion:
	Spurious response	≤–70dBc (10 to 100MHz)
	T. T	≤–80dBc (0.1 to 8.1GHz)
		≤−75dBc or noise level (8.1 to 21.2GHz)
		*Frequency diffrence of two signals \ge 50kHz, mixer input level: -30dBm
		Image response:
		≤-65dBc (Input frequency ≤18GHz)
		≤-60dBc (Input frequency >18GHz)
		Multiple respose: \leq -60dBc >band 1, 2, 3)
	1dB gain compression	≥-5dBm (≥100MHz, at mixer input level)
\vdash	rub gain compression	Setting range: 20ms to 1000s
	Sweep time	(manual settable, or automatically settable according to span, resolution bandwidth and video bandwidth)
ام		Accuracy: ±15% (20ms to 100s), ±25% (110s to 1000s), ±1% (digital zero span mode)
96	Sweep mode	Continious, single
Sweep	Time domain sweep mode	Analog zero span, digital zero span
رم	Zone sweep	Sweeps only in frequency range indicated by zone marker
	Tracking sweep	Sweeps while tracking peak points within zone marker (zone sweep also possible)
	Numbers of points	501
	rumbers of points	NORMAL: Simultaneously displays max. and min. points between sample points
	Detection mode	POS PEAK: Displays max. point between sample points
		NEG PEAK: Displays min. point between sample points
		SAMPLE: Displays momentary value at sample points
		Detection mode switching uncertaity: ±0.5dB (at reference level)
1 ,,	Display	Color TFT-LCD, Size 5.5", Number of colors: 17 (RGB, each 64-scale settable),
ΙË	Display	Intensity adjustment: 5 steps settable
∺		Trace A: Displays frequency spectrum
≧		Trace B: Displays frequency spectrum
Functions	Display function	Trace Time: Displays time domain waveform at center frequency
		Trace A/B: Displays Trace A and Trace B simultaneously, simultaneous sweep of same frequency, alternate
		sweep of independent frequencies
		1 1
		Trace A/BG: Display frequency region to be observed (background) and object band (foreground) selected
		from background with zone marker simultaneously, alternate sweep
		Trace A/Time: Displays frequency spectrum, and time domain waveform at center frequency simultaneously
	G. C.	Trace move/calculation: $A \rightarrow B$, $B \rightarrow A$, $A \rightarrow B$, $A + B \rightarrow A$, $A - B + DL \rightarrow A$
	Storage functions	NORMAL, VIEW, MAX HOLD, AVERAGE, CUMULATIVE, OVERWRITE

	Model	MS2665C			
		Setting range: 2, 5, 10, 20, 50, 100, 200kHz/div			
	FM demodulation waveform display	Accuracy: ±5% of full scale			
		(referenced to center frequency after calibration, DC-coupled, RBW 3MHz, VBW 1Hz, CW)			
		Frequency response (3dB): DC (50Hz at AC coupled) to 100kHz (range ≤20kHz/div, VBW off),			
		DC (50Hz at AC coupled) to 500kHz (range ≤50kHz/div, VBW off)			
		*Usable RBW: ≥1kHz			
	Signal search	AUTO TUNE, PEAK→CF, PEAK→REF, SCROLL			
	Zone marker	NORMAL, DELTA			
	Marker	$MARKER{\to}CF, MARKER{\to}REF, MARKER{\to}CF \ STEP \ SIZE, \Delta MARKER{\to}SPAN, ZONE{\to}SPAN$			
	Peak search	PEAK, NEXT PEAK, NEXT RIGHT PEAK, NEXT LEFT PEAK, MIN DIP, NEXT DIP			
	Multi-marker	Numbers of markers: 10 max. (HIGHEST 10, HARMONICS, MANUAL SET)			
		Noise power (dBm/Hz, dBm/ch), C/N (dBc/Hz, dBc/ch), occupied bandwidth (power N% method, X–dB			
		down method), adjacent channel leakage power (REF: total power method, REF: reference level method,			
	Measure	REF: inband method, channel designate display: 2 channels×2, graphic diplay), average power of burst			
		signal (average power in designate time range of time domain waveform), template comparison (upper/lower			
		limits×each 2,time domain), MASK (upper/lower limits×each 2, frequency domain)			
	Save/recall	Save and recall setting conditions and waveform data to internal memory (max.12) or memory card			
		Printer (HP dotmatrix, EPSON dotmatrix or compatible model):			
	Hard copy	Display data can be hard-copied via the RS232C, GPIB, or Centoronics (Option10) interface			
ဋ	Haid copy	Plotter (HP-GL, GP-GL compatible models):			
Functions		Display data can be hard-copied via the RS232C or GPIB interface			
[]		Language: PTL (interpreter based on BASIC)			
5		Progamming: Using editor of external computer			
ш	DTI 4	Progamming memory: Memory card, upload/download to/from external computer			
	PTA	Progamming capacity: 192kbyte			
		Data processing: Directly accesses measurement data according to system variables, system subroutines,			
		and system functions			
	RS-232C	Output data to printer or plotter. Control from external computer (excluding power switch)			
		Functions: Meets IEEE488.2, Can be controlled as device from external controller (excluding power switch),			
	GPIB interface	or can control external equipment as controller			
		Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C1, C2, C3, C4, C28			
		Functions: Save/recall measurement settings and data, uploads/downloads PTA programs, access SRAM,			
	Memory card interface	EPROM and flash EEPROM (can write to SRAM only), Supports cards up to 2MB			
		Connector: PCMCIA Rel.2.0 2slots			
		Autocorrection of MA1621A inpedance transformer insertion loss			
	Correction	Correction accuracy (input attenuator: ≥10dB): ±2.5dB (9 to 100kHz), ±1.5dB (100kHz to 2GHz),			
		±2.0dB*1 (2 to 3GHz)			
	Input connector	Ν-J, 50Ω			
		IF OUTPUT: BNC connector, 10.69MHz			
		VIDEO OUTPUT(Y): BNC connector, 100MHz input, 75Ω terminated			
	Auxiliary signal input and output	0 to 0.5V ±0.1V nominal (from lower edge to upper edge at 10dB/div)			
		0 to 0.4V ±0.1V nominal (from lower edge to upper edge at 10%/div)			
		COMPOSITE OUTPUT: For NTSC, 1Vp-p (75Ω terminated), BNC connector			
		EXT REF INPUT: 10MHz ±10Hz, ≥0dBm (50Ω terminated), BNC connector			
	Power (operating range)	AC 85 to 132 V/AC 170 to 250 V (automatic voltage switching), 47.5 to 63Hz, 380 to 420Hz (AC 85 to 132 V only), ≤330VA			
	Conducted disturbance	****			
	Radiation disturbance	Meets EN 61326-1: 2006 (Class A)			
2	Harmonic Current Emission	Meets EN 61326-1: 2006 (Class A) Meets EN 61000-3-2: 2006 (Class A)			
Others	Electrostatic Discharge	Meets EN 61300-3-2: 2006 (Class A) Meets EN 61326-1: 2006 (Table 2)			
Ιō	Electromagnetic Field Immunity	Meets EN 61326-1: 2006 (Table 2) Meets EN 61326-1: 2006 (Table 2)			
	Fast Transient / Burst	Meets EN 61326-1: 2006 (Table 2)			
	Surge	Meets EN 61326-1: 2006 (Table 2)			
	Conducted RF	Meets EN 61326-1: 2006 (Table 2)			
	Power Frequency Magnetic Field	Meets EN 61326-1: 2006 (Table 2)			
	Voltage Dips / Short Interruptions	Mees EN 61326-1: 2006 (Table 2)			
	Vibration	Mees MIL-STD-810D			
	Dimensions and mass	177 (H)×320 (W)×351 (D), ≤13kg (without option)			
	Ambient temparature	0 to 50°C (operate), -40 to 75°C (storage)			

	Model	MS2667C		
	Frequency range	9kHz to 30.0GHz		
	Frequency band	band frequency range harmonic order of the mixer (N)		
		0 0 to 3.2GHz 1		
		1– 3.1 to 6.5GHz 1		
	rrequency band	1+ 6.4 to 8.1GHz 1		
		2+ 8.0 to 15.3GHz 2		
		3+ 15.2 to 22.4GHz 3		
		4+ 22.3 to 30.0GHz 4		
	Frequency setting resolution	(1×N) Hz		
	Pre-selector range	3.1GHz to 30.0GHz (band1-, 1+, 2+, 3+, 4+)		
	Frequency readout accuracy	±(frequency readout×reference frequency accuracy + span×span accuracy) *Span: ≥10kHz×N, after calibration		
	Marker frequency readout accuracy	Normal: Same as frequency readout accuracy, Delta: Same asfrequency span accuracy		
	T	Resolutions: 1Hz, 10Hz, 10Hz, 1kHz		
	Frequency counter	Accuracy: Frequency readout×reference frequency accuracy ±1LSD (when S/N is 20dB)		
>	Eraguanay anan	Setting range: 0Hz, 1kHz to 30.1GHz		
Frequency	Frequency span	Accuracy: ±5%		
le		Setting range: 1kHz, 3kHz, 10kHz, 30kHz, 100kHz, 300kHz, 1MHz, 3MHz (manually or automatically		
<u>p</u>		settable according to frequency span)		
15	Resolution bandwidth (RBW)	*Option02: 30Hz, 100Hz, 300Hz are added.		
-	(3dB BW)	*Option03: 10Hz, 30Hz, 100Hz, 300Hz are added.		
	(SdB BW)	Measurements of such as noise, C/N, adjacent channel leakage power by measure function are executed		
		with the caluculated equivalent noise band width of the resolution band width.		
		Accuracy: ±20% (RBW=1kHz to 1MHz), ±30% (RBW=3MHz)		
		Selectivity (60dB:3dB): ≤15:1		
	Video bandwidth (VBW)	1Hz to 3MHz (1-3 sequence), off *manually or automatically settable according to resolution bandwidth		
		Noise sidebands: ≤–95dBc/Hz+20LogN (1MHz to 30.0GHz, 10kHz offset)		
	Signal purity and stability	Residual FM: ≤20Hzp-p/0.1s (1GHz, span=0Hz)		
	Digital parity and statement	Frequency drift: ≤200Hz×N/min (span ≤10kHz×N, sweep time ≤100s)		
		*After 1-hour warm-up at constant ambient temparature		
		Frequency: 10MHz		
	Reference oscillator	Aging rate: $\leq 1 \times 10^{-7} / \text{year}$, $\leq 2 \times 10^{-8} / \text{day}$		
		Temparature characterristics: ≤5×10 ⁻⁸ (0 to 50°C)		
<u> </u>		*Reference frequency at 25°C		
		Measurement range: Average noise level to +30dBm		
		Maximum input level: +30dBm (CW average power, RF ATT: ≥10dB), ±DC 0 V		
		Average noise level:		
	Level measurement	≤-115dBm (1MHz to 1GHz, band 0), ≤-115dBm + 1.5f [GHz] dB (1 to 3.1GHz, band 0)		
		≤-110dBm (3.1 to 8.1GHz, band 1), ≤-102dBm (8.0 to 15.3GHz, band 2) ≤-98dBm (15.2 to 22.4GHz, band 3), ≤-91dBm (22.3 to 30.0GHz, band 4)		
		*Resolution bandwidth: 1kHz, video bandwidth: 1Hz, input attenuator: 0dB Residual response: ≤–90dBm (RF ATT: 0dB, input: 50Ω termination, 1MHz to 8.1GHz)		
		Setting range		
		Log scale: –100 to +30dBm, or equivalent level, Linear scale: 224μV to 7.07V		
Ф		Unit		
19		Log scale: dBm, dBμV, dBmV, dBμV (e.m.f), W, Linear scale: V		
l≒		Reference level accuracy:		
Amplitude	Reference level	±0.4dB (-49.9dBm to 0dBm), ±0.75dB (-69.9 to -50dBm, 0.1 to +30dBm), ±1.5dB (-80 to -70dBm)		
⋖		*After calibration at 100MHz frequency, span 1MHz		
		(when RF ATT, RBW, VBW and sweep time set to AUTO)		
		RBW switching uncertainty:		
		±0.3dB (1kHz to 1MHz), ±0.4dB (1kHz to 3MHz)		
		*After calibration, referenced to RBW 3kHz		
		Input attenuator (RF ATT)		
		Setting range: 0 to 70dB (10dB steps)		
		*Manual settable or, automatically settable according to reference level		
		Accuracy: ±0.3dB (0 to 50dB), ±1dB (0 to 70dB)		
		*After calibration, referenced to frequecy 100MHz, input attenuator 10dB		
$\overline{}$				

	Model	MS2667C		
	Wiedel	Relative:		
Amplitude	Frequency response	±1.5dB (9kHz to 3.2GHz, band 0, RF ATT 10dB), ±1.0dB (100kHz to 3.2GHz, band 0, RF ATT 10dB) ±1.5dB (3.1 to 8.1GHz, band 1, RF ATT 10dB), ±3.0dB (8.0 to 15.3GHz, band 2, RF ATT 10dB) ±4.0dB (15.2 to 22.4GHz, band 3, RF ATT 10dB), ±4.0dB (22.3 to 30.0GHz, band 4, RF ATT 10dB) *After pre-selector tuning at band 1, 2, 3 and 4,referenced to midpoint between highest and lowest frequency deviation in each band. Absolute: ±5.0dB (9kHz to 30.0GHz, RF ATT 10dB, referenced to 100MHz) *At band 1, 2, 3, 4, after pre-selector tuning		
	Scale Fidelity	Scale: 10div Log scale: 10, 5, 2, 1dB/div Linear scale: 10, 5, 2, 1%/div Fidelity (after calibration) Log scale: ±0.4dB (0 to -20dB), ±1.0dB (0 to -70dB), ±1.5dB (0 to -85dB), ±2.5dB (0 to -90dB) Linear scale: ±4% of reference level Marker level resolution Log scale: 0.01dB Linear scale: 0.02% of reference level		
	Spurious response	2nd harmonic distortion: ≤-60dBc (10 to 200MHz, band 0, mixer level: -30dBm) ≤-70dBc (0.2 to 1.55GHz, band 0, mixer level: -30dBm) ≤-90dBc or average noise level (1.55 to 15GHz, band 1, 2, 3, 4, mixer level: -10dBm) Two signal 3rd order intermodulation distortion: ≤-70dBc (10 to 100MHz), ≤-80dBc (0.1 to 8.1GHz) ≤-75dBc or noise level (8.1 to 26.5GHz) ≤-75dBc or noise level (typical, 26.5 to 30GHz) *Frequency diffrence of two signals ≥50kHz, mixer input level: -30dBm Image response: ≤-65dBc (Input frequency ≤18GHz), ≤60dBc (Input frequency ≤22 GHz)		
	1dD gain compression	≤–55dBc (Input frequency ≤30GHz) Multiple respose/Out of band response: ≤60dBc (≤22GHz), ≤–55dBc (≤30GHz) ≥–5dBm (≥100MHz, at mixer input level)		
-	1dB gain compression	Setting range: 20ms to 1000s		
Sweep	Sweep time	(manual settable, or automatically settable according to span, resolution bandwidth and video bandwidth) Accuracy: ±15% (20ms to 100s), ±25% (110s to 1000s), ±1% (digital zero span mode)		
ĕ	Sweep mode	Continious, single		
≥	Time domain sweep mode	Analog zero span, digital zero span		
"	Zone sweep	Sweeps only in frequency range indicated by zone marker		
	Tracking sweep	Sweeps while tracking peak points within zone marker (zone sweep also possible)		
	Numbers of points	501		
	Detection mode	NORMAL: Simultaneously displays max. and min. points between sample points POS PEAK: Displays max. point between sample points NEG PEAK: Displays min. point between sample points SAMPLE: Displays momentary value at sample points Detection mode switching uncertaity: ±0.5dB (at reference level)		
SI	Display	Color TFT-LCD, Size 5.5", Number of colors: 17 (RGB, each 64-scale settable),		
.⊡		Intensity adjustment: 5 steps settable		
Functions	Display function	Trace A: Displays frequency spectrum Trace B: Displays frequency spectrum Trace Time: Displays time domain waveform at center frequency Trace A/B: Displays Trace A and Trace B simultaneously, simultaneous sweep of same frequency, alternate sweep of independent frequencies Trace A/BG: Display frequency region to be observed (background) and object band (foreground) selected from background with zone marker simultaneously, alternate sweep Trace A/Time: Displays frequency spectrum, and time domain waveform at center frequency simultaneously		
	Storage functions	Trace move/calculation: $A \rightarrow B$, $B \rightarrow A$, $A \leftrightarrow B$, $A + B \rightarrow A$, $A - B + DL \rightarrow A$		
	Storage functions	NORMAL, VIEW, MAX HOLD, AVERAGE, CUMULATIVE, OVERWRITE		

	Model			MS2667C
	Model		Setting range: 2, 5, 10, 20, 50, 10	
			Accuracy: ±5% of full scale	
			(referenced to center fr	requency after calibration, DC-coupled, RBW 3MHz, VBW 1Hz, CW)
	FM demodul	ation waveform display	Frequency response (3dB): DC (5	0Hz at AC coupled) to 100kHz (range ≤20kHz/div, VBW off),
			DC (5	0Hz at AC coupled) to 500kHz (range ≥50kHz/div, VBW off)
			*Useable RBW: ≥1kHz	
	Signal search		AUTO TUNE, PEAK→CF, PEAF	X→REF, SCROLL
	Zone marker		NORMAL, DELTA	
	Marker		MARKER→CF, MARKER→RE	F, MARKER \rightarrow CF STEP SIZE, Δ MARKER \rightarrow SPAN, ZONE \rightarrow SPAN
	Peak search		PEAK, NEXT PEAK, NEXT RIG	HT PEAK, NEXT LEFT PEAK, MIN DIP, NEXT DIP
	Multi-marke	r	Numbers of markers: 10 max. (H)	GHEST 10, HARMONICS, MANUAL SET)
			Noise power (dBm/Hz, dBm/ch),	C/N (dBc/Hz, dBc/ch), occupied bandwidth (power N% method, X–dB
	Measure		down method), adjacent channel l	eakage power (REF: total power method, REF: reference level method,
			REF: inband method, channel de	signate display: 2 channels×2, graphic diplay), average power of burst
			signal (average power in designate	time range of time domain waveform), template comparison (upper/lower
			limits×each 2,time domain), MAS	K (upper/lower limits×each 2, frequency domain)
	Save/recall		Save and recall setting conditions	and waveform data to internal memory (max.12) or memory card
			Printer (HP dotmatrix, EPSON do	matrix or compatible model):
	Hard copy		Display data can be hard-copied	via the RS232C, GPIB, or Centoronics (Option10) interface
	Tiara copy		Plotter (HP-GL, GP-GL compatible	e models):
			Display data can be hard-copied	via the RS232C or GPIB interface
			Language: PTL (interpreter based	·
			Progamming: Using editor of exte	÷
	РТА			ard, upload/download to/from external computer
			Progamming capacity: 192kbyte	
				es measurement data according to system variables, system subroutines,
ટ			and system functions	
Functions	RS-232C			Control from external computer (excluding power switch)
t	GPIB interface		1	be controlled as device from external controller (excluding power switch),
<u>`</u> ;			1	equipment as controller
"				6, L4, SR1, RL1, PP0, DC1, DT1, C1, C2, C3, C4, C28
	Memory card interface			ent settings and data, uploads/downloads PTA programs, access SRAM,
				PROM (can write to SRAM only), Supports cards up to 2MB
			Connector: PCMCIA Rel.2.0 2slc	
	Correction		Autocorrection of MA1621A inpe	transformer insertion foss nator: \geq 10dB): \pm 2.5dB (9 to 100kHz), \pm 1.5dB (100kHz to 2GHz),
			Correction accuracy (input attent	
			Frequency range: 18GHz to 110G	±2.0dB*1 (2 to 3GHz)
			Frequency band configuration	1L
		Frequency	Band Frequency	harmonic order of mixer
			K 18 to 26.5GI	
			A 26.5 to 40GI	
			Q 33 to 50GHz	
			U 40 to 60GHz	
			V 50 to 75GHz	
			E 60 to 90GHz	
	External		W 75 to 110GH	
	Amplitude Input/output terminal			Iz to each bandwidth *N: harmonic order of mixer
			Level measurement	
		Amplitude	Mixer conversion loss setting range:	15 to 85dB
			Maximum input level:	Depends on the external mixer used
			Average noise level:	Depends on the external mixer used
			Reference level setting range:	-100dBm to (-25 + M) dBm (Log scale ,*M: mixer conversion loss)
			Frequency response:	Depends on the external mixer used
		Input/output terminal	Suitable mixer:	2-port mixer only (Local frequency: 4 to 7GHz, IF frequency:689.3MHz)
			Display gain :	0±2dB (External mixer input level –10dBm, when mixer conversion loss
			is 15 dB)	
		1	I.	

Model		MS2667C	
	Input connector	Ν-J, 50Ω	
	Auxiliary signal input and output	IF OUTPUT: BNC connector, 10.69MHz	
		VIDEO OUTPUT (Y): BNC connector, 100MHz input, 75Ω terminated	
		0 to 0.5V ±0.1V nominal (from lower edge to upper edge at 10dB/div)	
		0 to 0.4V ±0.1V nominal (from lower edge to upper edge at 10%/div)	
		COMPOSITE OUTPUT: For NTSC, 1Vp-p (75Ω terminated), BNC connector	
		EXT REF INPUT: 10MHz ±10Hz, ≥0dBm (50Ω terminated), BNC connector	
	Power (operating range)	AC 85 to 132 V/AC 170 to 250 V (automatic voltage switching),	
		47.5 to 63Hz, ≤400VA	
	Conducted disturbance Meets EN 61326-1: 2006 (Class A)		
	Radiation disturbance	Meets EN 61326-1: 2006 (Class A)	
ြ	Harmonic Current Emission	Meets EN 61000-3-2: 2006 (Class A)	
Others	Electrostatic Discharge	Meets EN 61326-1: 2006 (Table 2)	
۱¥	Electromagnetic Field Immunity	Meets EN 61326-1: 2006 (Table 2)	
10	Fast Transient / Burst	Meets EN 61326-1: 2006 (Table 2)	
	Surge	Meets EN 61326-1: 2006 (Table 2)	
	Conducted RF	Meets EN 61326-1: 2006 (Table 2)	
	Power Frequency Magnetic Field	Meets EN 61326-1: 2006 (Table 2)	
	Voltage Dips / Short Interruptions	Meets EN 61326-1: 2006 (Table 2)	
	Vibration	Meets MIL-STD-810D	
	Dimensions and mass	177 (H)×320 (W)×381 (D), ≤15kg (without option)	
	Ambient temparature $0 \text{ to } 50^{\circ}\text{C (operate)}, -40 \text{ to } 75^{\circ}\text{C (storage)}$		

	Model	MS2668C		
	Frequency range	9kHz to 40.0GHz		
		band frequency range harmonic order of the mixer (n) 0 0 to 3.2GHz 1		
		1– 3.1 to 5.7GHz 1		
	Frequency band	1+ (n=1) 5.5 to 8.1GHz 1		
	requency band	1+ (n=2) 8.0 to 14.3GHz 2		
		2- (n=4) 14.1 to 26.5GHz 4		
		3- (n=6) 26.2 to 40.0GHz 6		
	Frequency setting resolution	(1×N) Hz		
	Pre-selector range	3.1GHz to 40.0GHz (band 1-, 1+, 2-, 3-)		
	Frequency readout accuracy	± (frequency readout × reference frequency accuracy + span × span accuracy)		
	rrequericy readout accuracy	*Span: ≥ 10kHz × n, after calibration		
	Marker frequency readout accuracy	Normal: Same as frequency readout accuracy, Delta: Same as frequency span accuracy		
	Frequency counter	Resolutions:1Hz, 10Hz, 100Hz, 1kHz		
		Accuracy: Frequency readout × reference frequency accuracy ± 1LSD (when S/N is 20dB)		
	Frequency span	Setting range: 0Hz, 1kHz to 40.1GHz		
		Accuracy: ±5%		
Frequency		Setting range:1kHz, 3kHz, 10kHz, 30kHz, 100kHz, 300kHz, 1MHz, 3MHz (manually or automatically		
le le		settable according to frequency span)		
9		*Option02: 30Hz, 100Hz, 300Hz are added.		
l e	Resolution bandwidth (RBW)	Option03: 10Hz, 30Hz, 100Hz, 300Hz are added.		
-	(3dB BW)	Measurements of such as noise ,C/N, adjacent channel leakage power by measure function are executed with		
		the calculated equivalent noise band width of the resolution band width.		
		Accuracy: (20% (RBW= 1kHz to 1MHz), (30% (RBW=3MHz)		
		Selectivity (60dB: 3dB): \leq 15:1		
	Video bandwidth (VBW)	1Hz to 3MHz (1-3 sequence), off *manually or automatically settable according to resolution bandwidth		
		Noise sidebands: ≤–95dBc/Hz + 20Log N (1MHz to 40.0GHz, 10kHz offset)		
	Signal purity and stability	Residual FM: ≤ 20Hzp-p/0.1s (1GHz, span=0Hz)		
	Signal purity and stability	Frequency drift: ≤200Hz (N/min (span ≤10kHz × n, sweep time ≤100s)		
		*After 1-hour warm-up at constant ambient temperature		
		Frequency:10 MHz		
	Reference oscillator	Aging rate: $\leq 1 \times 10^{-7} / \text{year}$, $\leq 2 \times 10^{-8} / \text{day}$		
		Temperature characteristics: ≤5×10 ⁻⁸ (0 to 50°C)		
		*Reference frequency at 25C°		
		Measurement range: Average noise level to +30dBm		
		Maximum input level: +30dBm (CW average power, RF ATT : ≥10dB), ±DC 0 V		
	Level measurement	Average noise level:		
		≤-115dBm (1MHz to 1GHz, band 0), ≤-115dBm + 1.5 f[GHz] dB (1 to 3.1GHz, band 0)		
		S-114dBm (3.1 to 8.1GHz, band 1-,1+(n=1)), S-113dBm (8.0 to 14.3GHz, band 1+(n=2))		
		≤-105dBm (14.1 to 26.5GHz, band 2-), ≤-101dBm (26.2 to 40.0GHz, band 3-)		
		*Resolution bandwidth: 1kHz,video bandwidth: 1 Hz,input attenuator:0dB		
		Residual response: ≤–90dBm (RF ATT: 0dB, input: 50Ω termination, 1 MHz to 8.1GHz)		
		Setting range		
		Log scale:–100 to +30dBm, or equivalent level, Linear scale:224µV to 7.07V Unit		
Ф		Log scale: dBm,dBμV,dBmV,dBμV (e.m.f), W, Linear scale: V		
Amplitude		Reference level accuracy:		
1	Reference level	±0.4dB (-49.9dBm to 0dBm), ±0.75dB (-69.9 to -50dBm, 0.1 to +30dBm),		
lμ		±1.5dB (-80 to -70dBm)		
ΙĀ		*After calibration at 100MHz frequency, span 1MHz		
		(when RF ATT, RBW, VBW and sweep time set to AUTO)		
		RBW switching uncertainty:		
		±0.3dB (1kHz to 1MHz), ±0.4dB (1kHz to 3MHz)		
		*After calibration ,referenced to RBW 3kHz		
		Input attenuator (RF ATT)		
		Setting range: 0 to 70dB (10dB steps)		
		*Manual settable or ,automatically settable according to reference level		
		Accuracy: ±0.3dB (0 to 50dB), ±1 dB (0 to 70dB)		
		*After calibration, referenced to frequecy 100MHz, input attenuator 10dB		
$\overline{}$		The content of reference to frequency rooming input attenuation roun		

(Continued)

	Model	MS2668C
		Relative:
	Frequency response	±1.5dB (9kHz to 3.2GHz, band 0), ±1.0dB (100kHz to 3.2GHz, band 0)
		± 1.5 dB (3.1 to 8.1GHz, band 1-, 1+ (n=1)), ± 3.0 dB (8.0 to 14.3GHz, band 1+ (n=2))
		±4.0dB (14.1 to 26.5GHz, band 2– (n=4)), ±4.0dB (26.2 to 40GHz, band 3– (n=6))
		*RF ATT 10dB, after pre-selector tuning at band 1, 2, 3 and 4, refrenced to midpoint highest and lowest
		frequency deviation in each band
		Absolute:
		±5.0dB (9kHz to 40GHz,band 1, RF ATT 10dB, referenced to 100MHz)
		*At band 1, 2, 3, after pre-selector tuning
		Scale:10div
1		Log scale: 10, 5, 2, 1dB/div
1		Linear scale: 10, 5, 2, 1%/div
1		Fidelity (after calibration)
1	Scale Fidelity	Log scale: ±0.4dB (0 to -20dB), ±1.0dB (0 to -70dB), ±1.5dB (0 to -85dB), ±2.5dB (0 to -90dB)
1	Seale Fidelity	Linear scale: ±4% of reference level
1		Marker level resolution
용		Log scale: 0.01dB
ΙŽ		Linear scale: 0.02% of reference level
Amplitude		2nd harmonic distortion:
5		≤-60dBc (10 to 200MHz, band 0, mixer level; -30dBm)
~		≤-70dBc (0.2 to 1.55GHz, band 0, mixer level: -30dBm)
1		≤-90dBc or average noise level(1.55 to 15GHz, band 1, 2, 3, 4, mixer level: -10dBm)
1		Two signal 3rd order inter-modulation distortion:
1		≤-70dBc (10 to 100MHz), ≤-80dBc (0.1 to 8.1GHz)
1		≤-75dBc or noise level (8.1 to 26.5GHz)
1	Spurious response	≤-75dBc or noise level (typical, 26.5 to 40GHz)
1		*Frequency difference of two signals ≥50kHz,mixer input level: –30dBm
		Image response:
		≤-65dBc (Input frequency ≤18GHz), ≤-60dBc(Input frequency ≤22GHz)
		≤-55dBc (Input frequency ≤40GHz)
		Multiple response/Out of band response:
		≤-70dBc (≤14GHz), ≤-60dBc (≤26GHz), ≤-55dBc (≤40GHz)
	1 dB gain compression	≥–5dBm (≥100MHz, at mixer input level)
		Setting range: 20ms to 1000s
	Sweep time	(manual settable, or automatically settable according to span, resolution bandwidth and video bandwidth)
유		Accuracy: ±15% (20ms to 100s), ±25% (110s to 1000s), ±1% (digital zero span mode)
ĕ	Sweep mode	Continuous, single
Sweep	Time domain sweep mode	Analog zero span, digital zero span
	Zone sweep	Sweeps only in frequency range indicated by zone marker
	Tracking sweep	Sweeps while tracking peak points within zone marker (zone sweep also possible)
	Numbers of points	501
		NORMAL: Simultaneously displays max. and min. points between sample points
1	Detection mode	POS PEAK: Displays max. point between sample points
		NEG PEAK: Displays min. point between sample points
		SAMPLE: Displays momentary value at sample points
1 ,,		Detection mode switching uncertainty: ±0.5dB (at reference level)
1 8	Display	Color TFT-LCD, Size 5.5", Number of colors:17 (RGB, each 64-scale settable),
∺		Intensity adjustment: 5 steps settable
≧		Trace A: Displays frequency spectrum
Functions	Display function	Trace B: Displays frequency spectrum
		Trace Time: Displays time domain waveform at center frequency
		Trace A/B: Displays Trace A and Trace B simultaneously, simultaneous sweep of same frequency, alternate
		sweep of independent frequencies
1		Trace A/BG: Display frequency region to be observed (background) and object band (foreground) selected
1		from background with zone marker simultaneously, alternate sweep
		Trace A/Time: Displays frequency spectrum, and time domain waveform at center frequency simultaneously
1	Storage functions	Trace move/calculation: A → B, B → A, A → , A + B → A, A - B + DL → A
	Storage functions	NORMAL,VIEW,MAX HOLD,AVERAGE,CUMULATIVE,OVERWRITE

(Continued)

	Model		MS2668C	
			Setting range: 2, 5, 10, 20, 50, 100, 200kHz/div	
			Accuracy: ±5% of full scale	
			(referenced to center frequency after calibration, DC-coupled, RBW 3MHz, VBW 1Hz, CW)	
	FM demodula	ation waveform display	Frequency response (3dB): DC (50Hz at AC coupled) to 100kHz (range ≤20kHz/div, VBW off), DC (50Hz	
			at AC coupled) to 500kHz (range≥50kHz/div, VBW off)	
			*Useable RBW: \geq1kHz	
	Signal search		AUTO TUNE, PEAK→CF, PEAK→REF, SCROLL	
	Zone marker		NORMAL, DELTA	
	Marker		MARKER→CF, MARKER→REF, MARKER→CF STEP SIZE, ΔMARKER→SPAN, ZONE→SPAN	
	Peak search		PEAK, NEXT PEAK, NEXT RIGHT PEAK, NEXT LEFT PEAK, MIN DIP, NEXT DIP	
	Multi-marker		Numbers of markers: 10 max. (HIGHEST 10, HARMONICS, MANUAL SET)	
	Iviuiti-iliaikei		Noise power (dBm/Hz, dBm/ch), C/N (dBc/Hz, dBc/ch), occupied bandwidth (power N% method, X-dB	
			down method), adjacent channel leakage power (REF: total power method, REF: reference level method,	
	Mangura			
	Measure		REF: inband method, channel designate display: 2 channels × 2, graphic diplay), average power of burst	
			signal (average power in designate time range of time domain waveform), template comparison (upper/lower	
	C / 11		limits × each 2, time domain), MASK (upper/lower limits × each 2, frequency domain)	
	Save/recall		Save and recall setting conditions and waveform data to internal memory (max.12) or memory card	
			Printer (HP dotmatrix, EPSON dotmatrix or compatible model):	
	Hard copy		Display data can be hard-copied via the RS232C, GPIB, or Centoronics (Option10) interface	
			Plotter (HP-GL, GP-GL compatible models):	
			Display data can be hard-copied via the RS232C or GPIB interface	
			Language: PTL (interpreter based on BASIC) Progamming:Using editor of external computer	
	PTA		Progamming memory: Memory card, upload/download to/from external computer Progamming capacity: 192kbyte	
			Data processing: Directly accesses measurement data according to sysytem variables, system subroutines,	
l S	DC 222C		and system functions Output data to printer or plotter. Control from external computer (excluding power switch)	
Functions	RS-232C		Functions: Meets IEEE488.2, Can be controlled as device from external controller (excluding power switch),	
2	GPIB interface		or can control external equipment as controller	
			^ ^	
			Interface functions: SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C1, C2, C3, C4, C28 Functions: Save/recall measurement settings and data,uploads/downloads PTA programs, access SRAM,	
	Memory card interface			
			EPROM and flash EEPROM (can write to SRAM only), Supports cards up to 2MB Connector: PCMCIA Rel.2.0 2 slots	
			Autocorrection of MA1621A impedance transformer insertion loss	
	Correction Frequency		Correction accuracy(input attenuator: (10dB):	
			±2.5dB (9 to 100kHz), ±1.5dB (100kHz to 2GHz), ±2.0dB*1 (2 to 3GHz)	
			Frequency Range: 18GHz to 110GHz	
	1	riequency	. , ,	
			Frequency band configuration Band Frequency harmonic order of mixer	
			Band Frequency harmonic order of mixer K 18 to 26.5GHz 4	
			V 50 to 75GHz 11 E 60 to 90GHz 13	
	External mixers			
		Amplitude	Span setting range: 0Hz, 100 × N Hz to each bandwidth *N: harmonic order of mixer	
		Amplitude	Level measurement Mixer conversion less setting range; 15 to 85 dP	
			Mixer conversion loss setting range: 15 to 85dB	
			Maximum input level: Depends on the external mixer used	
			Average noise level: Depends on the external mixer used	
			Reference level setting range: -100dBm to (-25 + M) dBm (Log scale, *M: mixer conversion loss)	
		Input/output tormir -1	Frequency response: Depends on the external mixer used Suitable mixer: 2-port mixer only (Local frequency: 4 to 7GHz, IF frequency: 689.31MHz)	
	Input/output terminal		Display gain: 0 (2dB (External mixer input level –10dBm, when mixer conversion loss is 15dB)	
\Box			Dispray gain. 0 (200 (External infact input fever –100Bin, when finizer conversion loss is 150B)	

(Continued)

Model		MS2668C
	Input connector	K-J, 50Ω
	Auxiliary signal input and output	IF OUTPUT:BNC connector, 10.69MHz
		VIDEO OUTPUT (Y): BNC connector,100 MHz input, 75Ω terminated
		0 to 0.5V (0.1V nominal (from lower edge to upper edge at 10dB/div)
		0 to 0.4V (0.1V nominal (from lower edge to upper edge at 10%/div)
		COMPOSITE OUTPUT: For NTSC, 1Vp-p (75Ω terminated), BNC connector
		EXT REF INPUT:10MHz ±10Hz, ≥0dBm (50Ω terminated), BNC connector
	Power (operating range)	AC 85 to 132 V/AC 170 to 250 V (automatic voltage switching),
		47.5 to 63Hz, 380 to 420Hz (AC 85 to 132 V only), ≤400VA
	Conducted disturbance	Meets EN 61326-1: 2006 (Class A)
	Radiation disturbance	Meets EN 61326-1: 2006 (Class A)
Ŋ	Harmonic Current Emission	Meets EN 61000-3-2: 2006 (Class A)
Others	Electrostatic Discharge	Meets EN 61326-1: 2006 (Table 2)
ΙĦ	Electromagnetic Field Immunity	Meets EN 61326-1: 2006 (Table 2)
10	Fast Transient / Burst	Meets EN 61326-1: 2006 (Table 2)
	Surge	Meets EN 61326-1: 2006 (Table 2)
	Conducted RF	Meets EN 61326-1: 2006 (Table 2)
	Power Frequency Magnetic Field	Meets EN 61326-1: 2006 (Table 2)
	Voltage Dips / Short Interruptions	Meets EN 61326-1: 2006 (Table 2)
	Vibration	Meets MIL-STD-810D
	Dimensions and mass	$177 \text{ (H)} \times 320 \text{ (W)} \times 381 \text{ (D)}, \leq 15 \text{kg (without option)}$
	Ambient temperature	0 to 50°C (operate), –40 to 75°C (storage)

• Option 01: Reference crystal oscillator (MS2665C only)

Frequency	10MHz
Aging rate	≤1×10 ⁻⁷ /year, ≤2×10 ⁻⁸ /day (referenced to 24 hours warmup)
Temparature stability	$\leq 5 \times 10^{-8} / (0^{\circ} \text{ to } 50^{\circ}\text{C}, \text{ referenced to } 25^{\circ}\text{C})$
Buffered output	BNC connector, 10MHz, >2Vp–p (200Ω terminated)

• Option 02: Narrow resolution bandwidth

	MS2665C	MS2667C/68C
Resolution bandwidth (3dB)	30Hz, 100Hz, 300Hz	
Resolution bandwidth switching uncertainty	±0.4dB (referenced to 3kHz)	
Bandwidth accuracy	±20% (100Hz, 300Hz)	±20%
G.1. (C.1.) (CO.1D. (2.1D.)	≤15:1 (300Hz, 100Hz)	≤15:1
Selectivity (60dB: 3dB)	≤20:1 (30Hz)	

• Option 03: Narrow resolution bandwidth

	MS2667C	MS2668C
Resolution bandwidth (3dB)	10Hz, 30Hz, 100Hz, 300Hz	
Resolution bandwidth switching uncertainty	±0.4dB (referenced to 3kHz RBW)	
Selectivity (60dB:3dB)	≤15:1	
Bandwidth accuracy	±20%	
Average noise level	*RBW=10Hz,VBW=1Hz, RF ATT=0dB	
	≤135dBm (1MHz to 1GHz)	≤135dBm (1MHz to 1GHz)
	≤135dBm+1.5f[GHz]dB (1 to 3.1GHz)	≤135dBm+1.5f[GHz]dB (1 to 3.1GHz)
	≤130dBm (3.1 to 8.1GHz)	≤–132dBm (3.1 to 8.1GHz)
	≤–122dBm (8.0 to 15.3GHz)	≤–131dBm (8.0 to 14.3GHz)
	≤–118dBm (15.2 to 22.4GHz)	≤–123dBm (14.1 to 26.5GHz)
	≤–111dBm (22.3 to 30GHz)	≤–119dBm (26.2 to 40GHz)

• Option 04: High-speed time domain sweep

Sweep time	12.5μS, 25μS, 50μS, 100 to 900μS (one most significant digit settable) 1.0 to 19mS (two upper significant digit settable)
Accuracy	±1%
Marker readout resolution	Log scale: 0.1dB Linear scale: 0.2% Reference Level

• Option 06: Trigger/gate circuit

Trigger switch		FREERUN, TRIGGERD
Ф		Trigger level: ±10V (Resolution: 0.1V)
	EXT	Trigger slope: RISE/FALL
≧		Connector: BNC
source	MDEO	Trigger level: -100 to 0dB (Log scale, resolution 1dB)
	VIDEO	Trigger slope: RISE/FALL
Trigger		Trigger level: High, Middle, or Low selectable
<u>:</u> 2°	WIDE IF VIDEO	Bandwidth: ≥20MHz
-		Trigger slope: RISE/FALL
	LINE	Frequency: 47.5 to 63Hz (Line lock)
delay	Pre-trigger	Displays waveform from previous max. 1 screen at trigger occurrence point
		Range: -Time Span to 0s
		Resolution: Time Span/500
Trigger	Post-trigger	Displays waveform from after max. 65.5ms at trigger occurrence point
l iĝi		Range: 0 to 65.5ms
-		Resolution: 1µs
		In frequency domain, displays spectrum of input signal in specified gate interval
Gate sweep		Gate delay: 0 to 65.5ms (from trigger point, resolution: 1µs)
		Gate width: 2µs to 65.5ms (from gate delay point, or external control, resolution: 1µs)

• Option 07: AM/FM demodulator (Sound monitor)

Sound output	When internal loud speaker and earphone connector (Φ 3.5 mini jack), adjustable volume	
--------------	--	--

• Option 10: Centronics interface

Function	Output data to printer (Centronics standard)
Connector	D-sub 25-pins (jack)

• Option 14: PTA Parallel I/O* (MS2665C only)

Function	Controlling external equipment from PTA
	The following controls are possible using PTA system variables:
	System variable Control description
	IOA Control of 8 bits parallel output port A
System variables	IOB Control of 8 bits parallel output port B
	IOC Control of 8 bits parallel I/O port C
	IOD Control of 8 bits parallel I/O port D
	EIO Control of I/O switching port C and D
	EXO Control of trigger (I/O)
	Using PTA PTL statements allows control of interrupts input externally to the I/O ports
	PTL statement Control description
	IOEN statement Allow interrupt input
PTL statements	IODI statement Prohibit interrupt input
	IOMA statement Masks interrupt input
	ON TO GOTO statement Changes program flow when interrupt occurs
	ON TO GOSUB Changes program flow when interrupt occurs
Write strobe signal	Outputs a write strobe pulse (negative pulse) to an external unit when output port C or D is controlled
DC output	Supplies +5 V ±0.5 V (max. 100 mA) power for external equipment use
	Negative logic, TTL level
l _{a.} .,	Rated current:
Signal logical level	Output ports A, B:Max.output current Hi: 2.6 mA, Lo: 24 mA
	Output ports C, D:Max.output current Hi: 15 mA, Lo: 24 mA
Cable connector	Other control output lines :Max. output current Hi: 0.4 mA, Lo: 8 mA
Cable connector	Amphenol 36 pins
	Pin No. Name Pin No. Name
	1 GND 19 Output port B (6)
	2 Trigger input 20 Output port B (7) MSB
	3 Trigger output 1 21 I/O port C (0) LSB
	4 Trigger output2 22 I/O port C (1)
	5 Output port A (0) LSB 23 I/O port C (2)
	6 Output port A (1) 24 I/O port C (3) MSB
	7 Output port A (2) 25 I/O port D (0) LSB
	8 Output port A (3) 26 I/O port D (1)
Connector pin layout	9 Output port A (4) 27 I/O port D (2)
	10 Output port A (5) 28 I/O port D (3) MSB
	11 Output port A (6) 29 Port C status 0/1:I/O
	12 Output port A (7) MSB 30 Port D status 0/1:I/O
	13 Output port B (0) LSB 31 Write strobe signal
	14 Output port B (1) 32 Interrupt signal
	15 Output port B (2) 33 (not used)
	16 Output port B (3) 34 +5 V power supply
	17 Output port B (4) 35 (not used)
	18 Output port B (5) 36 (not used)

^{*} Not installed with Option10: Centronics interface

• Option 15: Sweep signal output

Sweep output (X)	0 to 10V ±1V (≥100kΩ termination, from left side to right side of display scale), BNC connector
Sweep status output (Z)	TTL level (low level with sweeping), BNC connector

SECTION 2 PREPARATIONS BEFORE USE

This section explains the preparations and safety procedures that should be performed before using the MS2665C/67C/68C Spectrum Analyzer. The safety procedures are to prevent the risk of injury to the operator and damage to the equipment. Insure that you understand the contents of the pre-operation preparations before using the MS2665C/67C/68C. For connecting the GPIB cable and setting the GPIB address, see the Remote Control part of the separate Operation Manual

Vol.3.

TABLE OF CONTENTS

IInstallation Site and Environmental Conditions	2-3
Locations to be avoided	2-3
Fan clearance	2-3
Safety Measures	2-4
Power-on	2-4
Input level to RF Input	2-5
Connector of RF Input	2-5
Installation	2-6
Rack mounting	2-6
Preparations before Power-on	2-7
Connecting the Power Cord	2-8
Replacing fuse	2-9
Precaution for Handling Memory Card	2-11

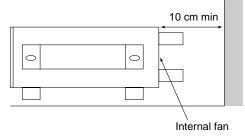
SECTION 2 PREPARATIONS BEFORE USE

Installation Site and Environmental Conditions

Locations to be avoided

The MS2665C/67C/68C spectrum analyzer operates normally at temperatures from 0 to 50 °C. However, for the best performance, the following locations should be avoided.

- Where there is severe vibration
- Where the humidity is high
- Where the equipment will be exposed to direct sunlight
- Where the equipment will be exposed to active gases


In addition to meeting the above conditions, to insure long-term trouble-free operation, the equipment should be used at room temperature and in a location where the power supply voltage does not fluctuate greatly.

CAUTION A

If the MS2665C/67C/68C spectrum analyzer is used at normal temperatures after it has been used or stored for a long time at low temperatures, there is a risk of short-circuiting caused by condensation. To prevent this risk, do not turn the MS2665C/67C/68C on until it has been allowed to dry out sufficiently.

Fan clearance

To suppress any internal temperature increase, the MS2665C/67C/68C has a fan on the rear panel as shown in the diagram below. Leave a gap of at least 10 cm between the rear panel and the wall, nearby equipment or obstructions so that fan ventilation is not blocked.

Safety Measures

This paragraph explains the safety procedures which should be followed under all circumstances not to counter the risk of an accidental electric shock, damage to the equipment or a major operation interruption.

Power-on

WARNING A

• Before power-on: The MS2665C/67C/68C spectrum analyzer must be connected to protective ground.

If the power is switched on without taking this countermeasure, there is a risk of receiving a accidental electric shock. In addition, it is essential to check the power supply voltage. If an abnormal voltage that exceeds the specified value is input, there is accidental risk of damage to the MS2665C/67C/68C and fire.

• During power-on To maintain the MS2665C/67C/68C, sometimes it is necessary to

make internal checks and adjustments with the covers removed while power is supplied. Very-high, dangerous voltages are used in the MS2665C/67C/68C, if insufficient care is taken, there is a risk of a accidental electric shock being received or of damage to the equipment. To maintain the MS2665C/67C/68C, request service by a service personnel who has received the required training.

In the following, special notes on safety procedures are extracted from sections other than Section 2. To prevent accidents, read this section together with the related sections before beginning operation.

Input level to RF Input

Frequency range: 9 kHz to 21.2 GHz (MS2665C)

9 kHz to 30.0 GHz (MS2667C)

9 kHz to 40.0 GHz (MS2668C)

Measurement level: Apply the measured signal with average noise level of up to +30 dBm to the N-type connector RF

Input of 50 Ω input impedance

The RF Input circuit is not protected against excessive power.

If a signal exceeding +30 dBm is applied with input attenuator setting ≥10 dB, the input attenuator and input mixer may be burned.

♠ is a warning mark to prevent such damage.

Connector of RF Input

MS2665C: N-J MS2667C: K-J MS2668C: K-J

CAUTION **A**

In case of MS2667C/68C, if you connect N type connector to RF Input, use the coaxial adaptor 34 AKNF50 (K·P-N·J) (sold separately).

Installation

Rack mounting

The B0395A/0395B Rack Mount Kit (sold separately) is required to mount this unit in a rack. The installation method is included in the rack mount kit diagram.

Preparations before Power-on

This unit operates normally when it is connected to an AC 85 to 132 V, or AC 170 to 250 V (automatic voltage change) 47.5 to 63 Hz AC power supply. To prevent the following problems, take the necessary procedures described on the following pages before power is supplied.

- Accidental electric shock
- · Damage caused by abnormal voltage
- Ground current problems

Note:

- The voltage and current rating are indicated on the rear panel when the instrument is shipped from the factory.
- In this manual, the power supply voltage and current ratings are represented by AC ** V and *** A, respectively.

To protect the operator, the following WARNING and CAUTION notices are attached to the rear panel of the MS2665C/2667C.

QUALIFIED PERSONNEL.

FOR CONTINUED FIRE PRORECTION REPLACE ONLY WITH SPECIFIED TYPE AND RATED FUSE.

WARNING \triangle

Disassembly, adjustment, maintenance, or other access inside this instrument by unqualified personal should be avoided. Maintenance of this instrument should be performed only by Anritsu trained service personnel who are familiar with the risk involved of fire and electric shock. Potentially lethal voltages existing inside this instrument, if contacted accidentally, may result in personal injury or death, or in the possibility of damage to precision components.

Always follow the instructions on the following pages.

Connecting the Power Cord

Check that the [Line] switch on the rear panel is turned off.

Insert the power plug into an outlet, and connect the other end to the power inlet on the rear panel. To ensure that the instrument is earthed, always use the supplied 3-pin power cord, and insert the plug into an outlet with an earth terminal.

WARNING **A**

If the power cord is connected without the instrument earthed, there is a risk of receiving a fatal electric shock. In addition, the peripheral devices connected to the instrument may be damaged.

When connecting to the power supply, DO NOT connect to an outlet without an earth terminal. Also, avoid using electrical equipment such as an extension cord or a transformer.

CAUTION A

If an emergency arises causing the instrument to fail or malfunction, disconnect the instrument from the power supply by either turning off the [Line] switch on the rear panel, or by pulling out the power cord or the power inlet.

When installing the instrument, place the instrument so that an operator may easily operate the [Line] switch.

If the instrument is mounted in a rack, a power switch for the rack or a circuit breaker may be used for power disconnection.

It should be noted that, the [Power] switch on the front panel of the instrument is a standby switch, and cannot be used to cut the main power.

Replacing fuse

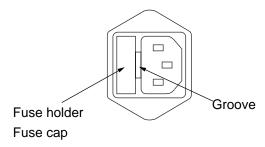
WARNING \triangle

- If the fuses are replaced while power is supplied, there is a serious risk of electric shock.

 Before replacing the fuses, set the power switch to OFF and remove the power cord from the power outlet.
- If power is supplied without protective grounding, there is a risk of accidental electric shock.
 In addition, if the AC power supply voltage is unsuitable, there is a risk of the internal circuits of the MS2665C/2667C being damaged by the abnormal voltage. Before supplying power again after changing the fuses, check that the protective grounding described previously is still connected, and check that the AC power supply voltage is suitable. Then, set the power switch to ON.

CAUTION A

When there are no supplied spare fuses, the replacement fuses must have the same rated voltage and current as the fuses in the fuse holders.


- If the replacement fuses are not of the same type, they may not fit correctly, there may be a faulty connection, or the time taken to for the fuses to blow may be too long.
- When an abnormality occurs again, if the voltage and current rating of the fuses is incorrect, the fuses may not blow with a consequent risk of damage to the equipment by fire.

This instrument with standard accessories has two spare 5 A fuses. The fuses are mounted in the fuse holder and must be replaced if they blow. If the fuses must be replaced, locate and remedy the cause before replacing the blown fuses.

After performing the safety procedures described on the preceding page, replace the fuses according to the following procedure.

Step Procedure

- 1 Set the front-panel [Power] switch to Stby and the rear-panel [Line] switch to OFF. Then, remove the power cord from the power-supply outlet.
- Place the tip of a ball point pen in the groove of the fuse holder and pull the fuse holder towards you. Then remove the cap, together with the fuse.

- **3** Remove the blown fuse from the cap and replace it with the spare fuse.
- 4 Replace the cap and fuse.

Precaution for Handling Memory Card

See para. 1.3 for the memory card to be used.

When a new memory card used to save any file, format it beforehand to MS-DOS.

When saving data to a memory card; confirm that the write-protect switch of the card is set at the NOT-PROTECTED side, and then install it to this instrument. (For the setting method, see the operation manual of the card.)

· Installing Memory Card

Install the memory card to this instrument, with the cutout of the card at the position as shown below. Two card can be installed at the upper and lower sides.

Memory Card

• Removing Memory Card

Push the left eject button to remove the memory card at the upper side. Push the right eject button to remove the memory card at the lower side.

· Replacing Battery of Memory Card

Memory card has a battery. When the battery life ends, the saved data is erased. Replace the battery before the life end. (For the battery life and replacing method, see the operation manual of the card.)

SECTION 3

PANEL DESCRIPTION

In this section, the front and rear panels are described about the case in which all the options are attached to.

TABLE OF CONTENTS

Table of Front and Rear Panel Features	3-3	3

SECTION 3 PANEL DESCRIPTION

In this section, the front and rear panels (Figs. 3-1 and 3-2) are described about the case in which all the options are attached to.

Table of Front and Rear Panel Features

Panel Marking	Explanation of Function		
(LCD)	This is a 5.5 " color TFT liquid crystal display (LCD). It displays the		
	trace waveforms, the parameter settings, the values of marker, and the		
	soft menu keys, etc.		
Menu On/Off	This toggles the	e soft-key menu display On/Off.	
F 1-F 6	These are the so	oft keys for selecting the soft-key menus linked to the	
	panel key opera	ation.	
More	This displays the next page of soft-key menus.		
Freq/Ampl	This is the frequency and level parameter data input section.		
	[Frequency]	Sets frequency.	
	[Span]	Sets frequency span.	
	[Amplitude]	Sets reference level.	
	[-> CF]	Sets peak level signal frequency on screen to center	
	frequency.		
	[->RLV]	Sets peak level on screen to reference level.	
Marker	This section is related to operation of marker functions.		
	[Marker] Sets marker.		
	[Multi Mkr] Sets multimarkers.		
	Press this key after pressing the [Shift] key.		
	[Peak Search]	Moves marker to currently-displayed peak level.	
	[Marker ->]	Sets parameter according to marker value.	
		Press this key after pressing the [Shift] key.	
User	This is a user-dedicated key which users can specify.		
	(LCD) Menu On/Off F 1-F 6 More Freq/Ampl Marker	(LCD) This is a 5.5 " of trace waveform soft menu keys. Menu On/Off This toggles the sepanel key operated the sepanel key operated. More This displays the sepanel key operated. This is the frequency [Span] [Amplitude] [-> CF] [-> RLV] Marker This section is a [Marker] [Multi Mkr] [Peak Search] [Marker ->]	

data		
data to		
nts		
-channel		
leakage power measurement, etc.		
ne		
frequency domain, up to two trace waveforms can be displayed.		
The zero-span (Time Domain) mode is selected simply by pressing the		
domain.		
ously, or		
су		
display		
m		
ol		
This sets the RBW, VBW, sweep time and input attenuator.		
i i		

No.	Panel Marking	Explanation of Function		
14	Entry	These keys set the numeric data, units and special functions.		
		[Rotary knob]	Used for moving marker and inputting data.	
		$[\land,\lor]$	Increments and decrements input data.	
		[Shift]	To execute panel functions indicated by blue letters, press this key and then press the blue-lettered key.	
		[BS]	Backspace key for correcting input mistakes.	
		[0-9, . , +/-]	Numeric-data setting keys.	
		[GHz, MHz, kH	Hz, Hz]	
			Units keys for frequency, level, time, etc.	
15	Preset	This sets the me	easurement parameters to the default values.	
16	Local	This changes th	e remote status to the local status.	
17	Сору	This outputs a h	nard copy of the screen to a printer or plotter.	
18	Stby/On	This is the power switch. It can be used when the back-panel power switch is on. The power-on condition is fetched from the Stby condition when the key is pressed for about 1 seconds. The equipment is returned to the Stby condition from the power-on condition when the key is pressed again for about 1 second.		
19	Memory Card	This is the slot to set memory cards which save/load the waveform data and measurement parameters etc. Up to two plug-in memory card can be used.		
20	RF Input	This is the RF input connector.		
21	Local Output	This is the output connector for external mixer local drive signal and input connector for if signal of external mixer. In case of MS2665C, this connector is not provided.		
50	(Fan)	This is the cooling fan for ventilating internally-generated heat. Leave a clearance of at least 10 cm around the fan.		
51	10 MHz STD	They are the input connector for an external reference crystal oscillator and the output connector of the 10 MHz Reference signal. When an external reference signal is input, the equipment switches automatically from the internal signal to the external signal. In case of MS2665C, if Option 01 is not attached to, this connector is not provided.		
52	IF OUT	This is the IF output connector. This signal is bandwidth controlled by the RBW setting.		

No.	Panel Marking	Explanation of Function
53	Video (Y)	This connector output a Y-axis signal that is proportional to the video
		detection signal output and is logarithmically compressed at log scale.
54	Composite Out	This is the video composite signal output connector.
55	O/I	This is the AC line power switch.
56	(Inlet)	This is the fused AC power inlet to which the supplied power cord is
		connected. It contains two time-lag fuses.
57	(Functional earth T	erminal)
		This is the terminal that is electrically connected to the chassis of the
		equipment.
58	RS-232C	This is the RS-232C connector. Connect it to an external system control-
		ler or printer, etc.
59	GPIB or	This connector is for use with a GPIB or Centornics (Option 10) interface.
	Centronics	It is connected to an external system controller, or a printer etc.
60	Trig/Gate In (±10 V	7) This is a input connector for external trigger/gate signal. (If Option 06 is
		not attached to, this connector is not provided.)
61	Phone	This is a output connector for earphone. (If Option 07 is not attached to,
		this connector is not provided.)
62	Sweep (X)	This is a output connector for sweep signal (X). (If Option 15 is not at-
	•	tached to, this connector is not provided.)
63	Sweep Status (Z)	This is a output connector for sweep status signal (Z). (If Option 15 is not
	· · · · · · · · · · · · · · · · · · ·	attached to, this connector is not provided.)

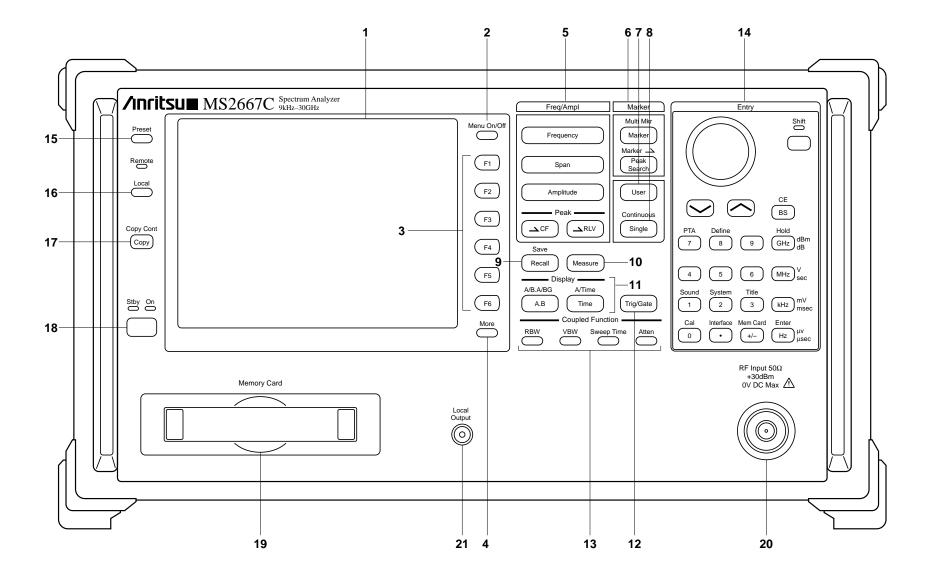


Fig. 3-1 Front Panel

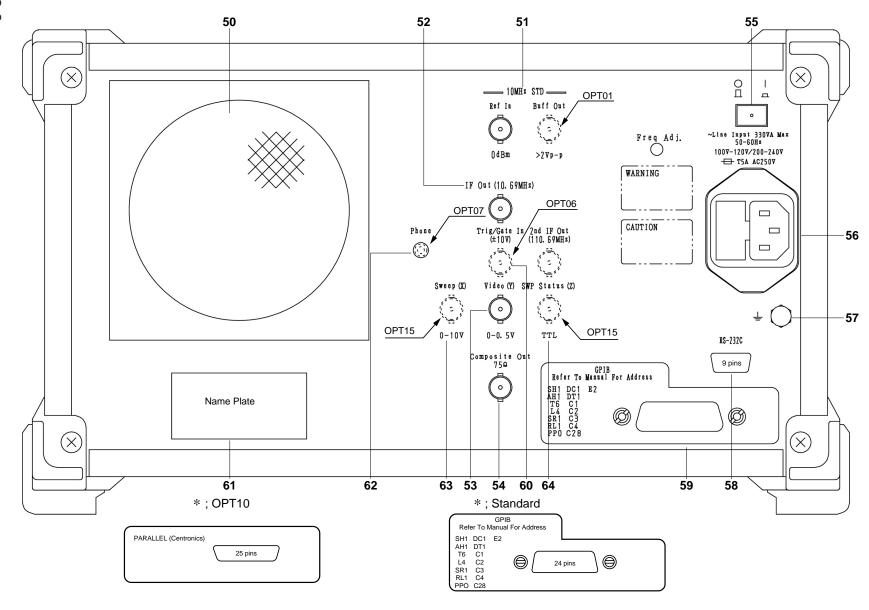


Fig. 3-2 Rear Panel

SECTION 4

SOFT-KEY MENU

In this section, soft-key menu functions and its hierarchical system are described using a tree.

TABLE OF CONTENTS

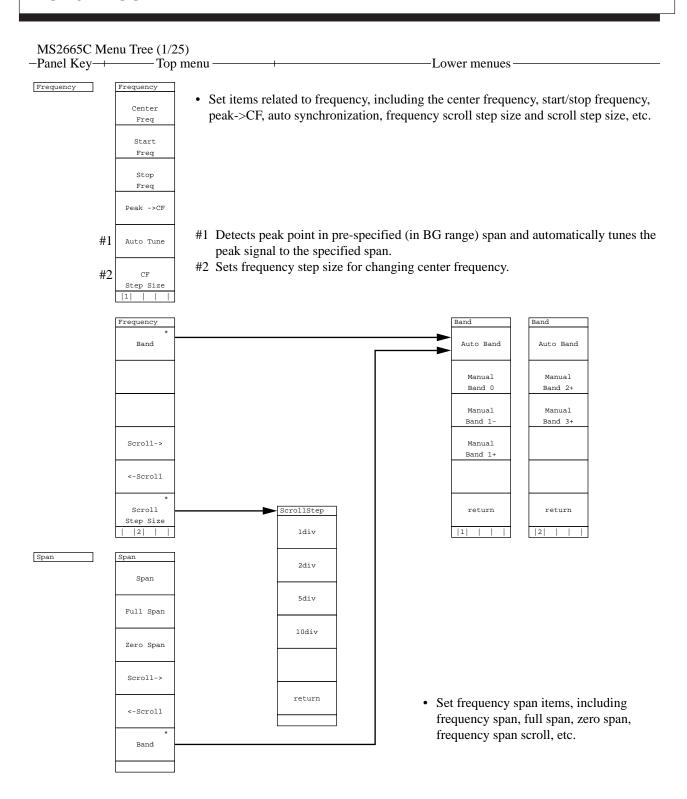
Soft-key Menu List	4-4
Menu Tree	4-8

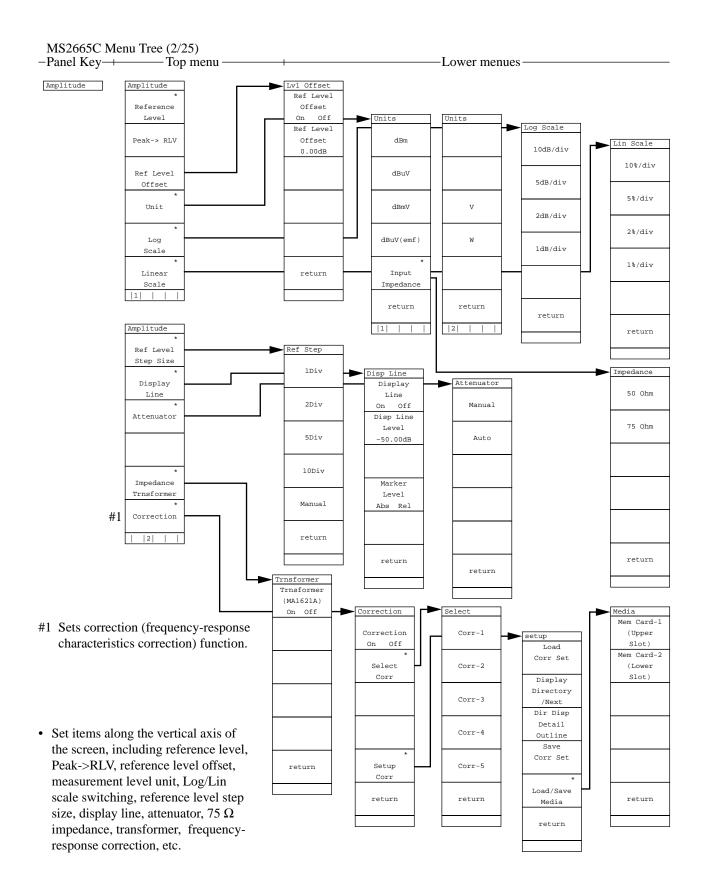
SECTION 4 SOFT-KEY MENU

In this section, soft-key menu functions and its hierarchical system are described using a tree. Matters to be noted about the tree are shown below.

- (1) Panel Key indicates a hard key on the front panel.
- (2) Top menus are the menus at the top level which are displayed on the screen when the panel key is pressed. Lower menus indicates other menus below the top menus.
- (3) When a soft key with an appended asterisk (*) is pressed in these menus, the menu moves to the lower menu indicated by the arrow symbol (->). However, if any not-supported-function soft key in an Option is pressed, an error message is displayed.
- (4) When the Return key is pressed at a lower menu, the next-higher menu is returned.
- (5) Menus with more than six items are split into several pages.
- (6) The menu page construction and currently-displayed page are indicated in the lower part of the menu. To move to the next page, press the [More] key.
- (7) Panel keys and soft keys prefixed by a sharp symbol (#) at the left of the menu frame, give an outline explanation of the function.

Soft-key Menu List

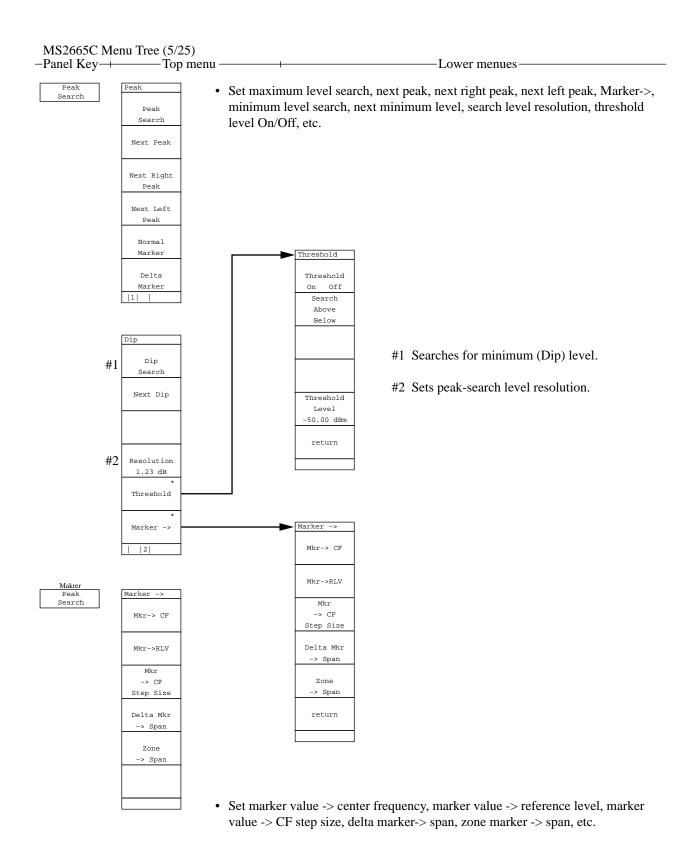

Menu		MS2665C	MS2667C/68C
	menu	Menu Tree (page/25)	Menu Tree (page/25)
Α	A/B,A/BG	15	15
	A/Time	16	16
	ACP Setup1	8	8
	ACP Setup2	8	8
	ACP Setup3	8	8
	Ajd ch pwr	8	8
	Amplitude	2	2
	Attenuator	2, 3	2, 3
	Avg Count	14	14
В	Band	1	1
	Brightness	19	19
	Burst Pwr	11	11
С	C/N Meas	7	7
	Channel Power Measure	7	7
	Cal	20	20
	Ch Power	7	7
	Change Clr	19	19
	Check File	23	23
	Copy Cont	18	18
	Copy from	19	19
	Correction	2	2
	Count Setup	7	7
D	Def files	24	24
	Def Menus	24	24
	Define	24	24
	Define Clr	19	19
	Detection	14, 16	14, 16
	Dip	5	5
	Directory	22	22
	Disp Line	2, 4	2, 4
	Display	19	19
Е	Edit Menu	24	24
	Ext Mix	-	2
	Expand	16	16

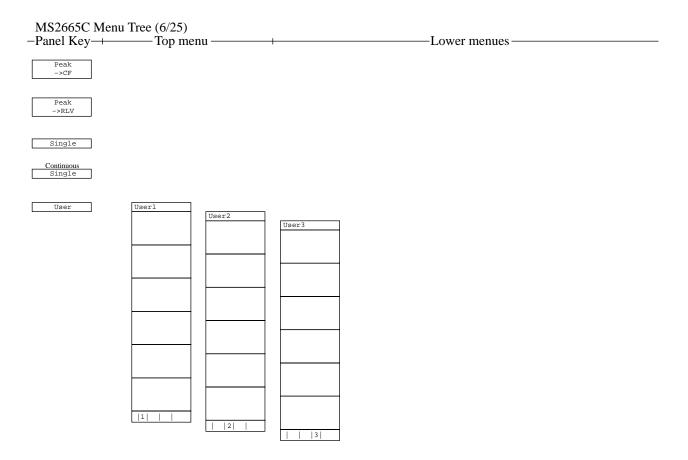

	Manu	MS2665C	MS2667C/68C
	Menu	Menu Tree (page/25)	Menu Tree (page/25)
F	File Ope		
	FM monitor	16	16
	Format	22	22
	Freq Count	7	7
	Freq Offset	-	1
	Frequency	1	1
G	Gate	17	17
	Gate Setup	17	17
Н	Hold Count	14	14
ı	Impedance	2	2
	Initialize	24	24
	Interface	21	21
	Int Mix	-	2
	Item	12, 18	12, 18
L	LCD Brightness	19	19
	Lib Exec	23	23
	Lib File	23	23
	Lib Memory	23	23
	Lib Prgm	24	24
	Lib Remove	23	23
	Lin Scale	2	2
	Line	9, 10	9, 10
	Load/Save	9, 10	9, 10
	Location	18	18
	Log Scale	2	2
	Lvl Offset	2	2
М	Manual Set	4	4
	Marker	4	4
	Marker→	4, 5	4, 5
	Mask Meas	9	9
	Measure	7, 10	7, 10
	Media	2, 9, 10, 22, 24	2, 9, 10, 22, 24
	Mem Card	2, 9, 10, 22	2, 9, 10, 22
	Mkr Func	4	4
	Mkr List	4	4
	Move Mask	9	9
	Move Temp	10	10
	Multi Marker	4	4
N	Noise Meas	7	7
0	OBW Setup	8	8
	Occ BW	8	8

	Manu	MS2665C	MS2667C/68C
	Menu	Menu Tree (page/25)	Menu Tree (page/25)
Р	Paper Size	18	18
	Peak	5	5
	Plotter	18	18
	Pon State	19	19
	Preset	25	25
	Preslctr	20	20
	Printer	18	18
	PTA	22	22
	PTA Lib	23	23
R	RBW	3	3
	Recall	12	12
	Recl Media	12	12
	Ref Line	14	14
	Ref Step	2	2
	RS232C	21	21
S	Save	13	13
	Save Media	13, 18	13, 18
	Scroll Step	1	1
	Select	2, 9,10	2, 9, 10
	Set Date	19	19
	Set Time	19	19
	Setup	2	2
	Setup Mask	9	9
	Setup Temp	10	10
	Source	16, 17	16, 17
	Sound	19	19
	Span	1	1
	Storage	14, 16	14, 16
	Sweep Time	3	3
	Sweep Cntl	15, 16	15, 16
	System	19	19
Т	Temp Meas	10	10
	Threshold	5	5
	Title	21	21
	Trace A, B	14	14
	Trace Calc	14	14
	Trace Move	14	14
	Trace Time	16, 17	16, 17
	Trnsformer	2	2
	Trig Ext	17	17
	Trig Video	17	17
	Trigger	17	17

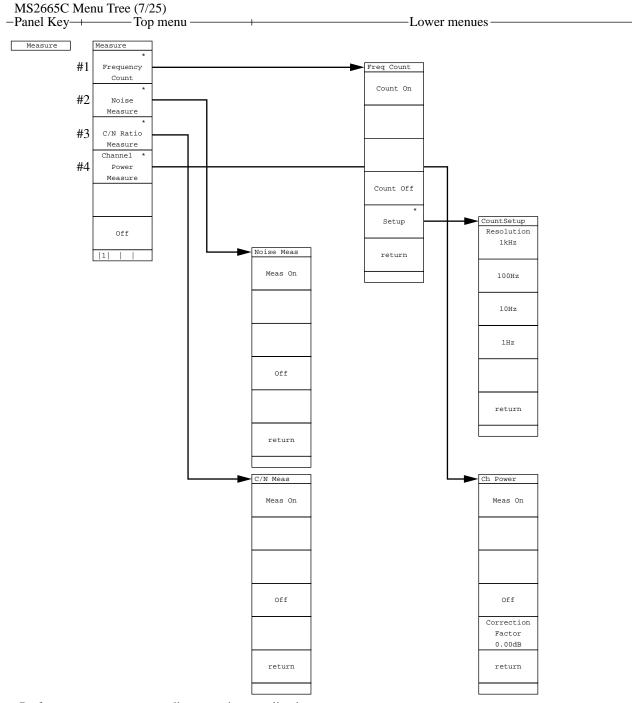
	Menu	MS2665C	MS2667C/68C
	Meriu	Menu Tree (page/25)	Menu Tree (page/25)
U	Units	2	2
	User1	6	6
	User2	6	6
	User3	6	6
٧	VBW	3	3
W	Wide IF	17	17
Z	Zone Width	4	4

Menu Tree





MS2665C Menu Tree (3/25) -Panel Key---Top menu --Lower menues -RBW RBW • Set the manual/auto of resolution bandwidth, and auto (RBW, VBW and SWP only) or all auto. Manual • Set Ratio of RBW to Span when RBW is Auto and Ratio Mode is "on". Auto RB/Span Ratio Ratio 0.01 RB, VB, SWT #1 Sets RBW, VBW, Sweep Time, Atten all to Auto. Auto All Auto VBW VBW • Set the manual/auto of video bandwidth, and auto (RBW, VBW Manual and SWP only) or all auto. Auto Filter Off Swee Time Sweep Time VB/RB #2 Sets ratio of VBW to RBW when VBW is Auto. #2 Ratio Manual 1.0 RB.VB.SWT Auto Auto All Auto • Set the manual/auto of sweep time, and auto (RBW, VBW and SWP only) or RB.VB.SWT all auto. All Auto All Auto Atten Attenuator Manual Auto All Auto


MS2665C Menu Tree (4/25) Top menu –Panel Key—+ -Lower menues Marker Marker • Set the selection of normal/delta/no marker, zone marker width, marker->, marker search mode, display line, marker tracking On/Off, zone sweep On/Off, etc. Normal Marker #1 Selects whether to search for maximum (Peak) or minimum (Dip) value in Marker zone marker. #2 Toggles zone sweep On/Off. Usually, the zone sweep is Off. At On, the Marker Off sweep time is reduced by sweeping only the zone specified by the zone marker. Zone Width Zone Width Spot Marker -> Marker -> 1Div Mkr-> CF |1| Mkr Func 2Div Mkr->RLV Marker #1 Search Mkr 5Div -> CF Step Size 10Div -> Span Display Disp Line Display return Zone -> Span Disp Line return Level Marker Tracking -50.00dBm On Off #2 Zone Sweep Marker On Off Level | |2| | Abs Rel Multi Marker Multi Mkr Mkr List Multi Marker List return Off Manual Set Change Highest 10 #3 Active Marker #3 Allocates up to 10 multi-markers Select sequentially from the peak level of the Harmonics Freq/Time Marker #4 Abs Rel signal displayed on screen. On with Level Auto Select #4 Allocates multi-markers to the harmonic Abs Rel Off with signals of frequency indicated by current Marker Auto List Select marker. Manual return Clear All #5 #5 Function allowing user to select only Set multi-markers necessary for return measurement.

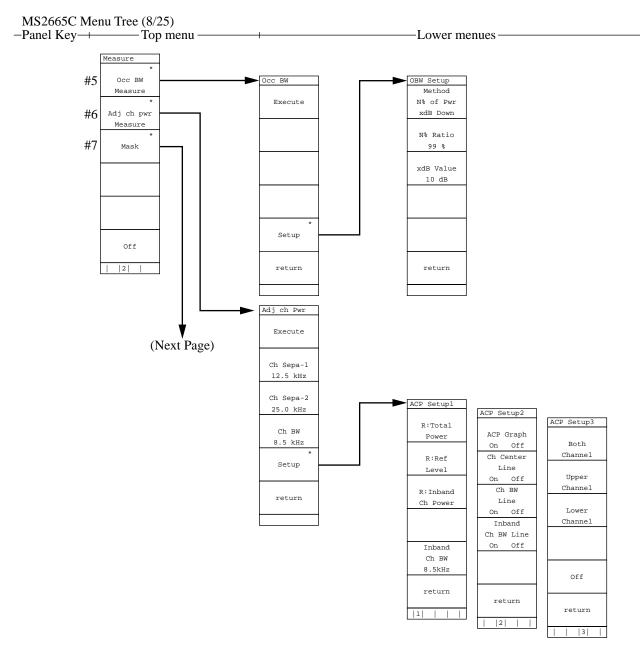
- Set multi-marker On/Off, 10 multi-marker, harmonic multi-marker, listing of multi-marker values, selection of necessary markers, etc.
- #6 Select "absolute value" or "relative value (display line)" to display marker level.

• The soft-key menu defined by the user is displayed. (See "User Define".)

• Perform measurement according to various applications:

#1 Frequency Count: Measure marker frequency with a high resolution.

Select resolution from 1 kHz, 100 Hz, 10 Hz and 1 Hz.


#2 Noise Measure: Measure the noise power within zone marker.

#3 C/N Ratio Measure: Measure the ratio of carrier signal and noise power. Reference marker of the delta

marker shall be set to the carrier, and marker's zone width specifies the power measured.

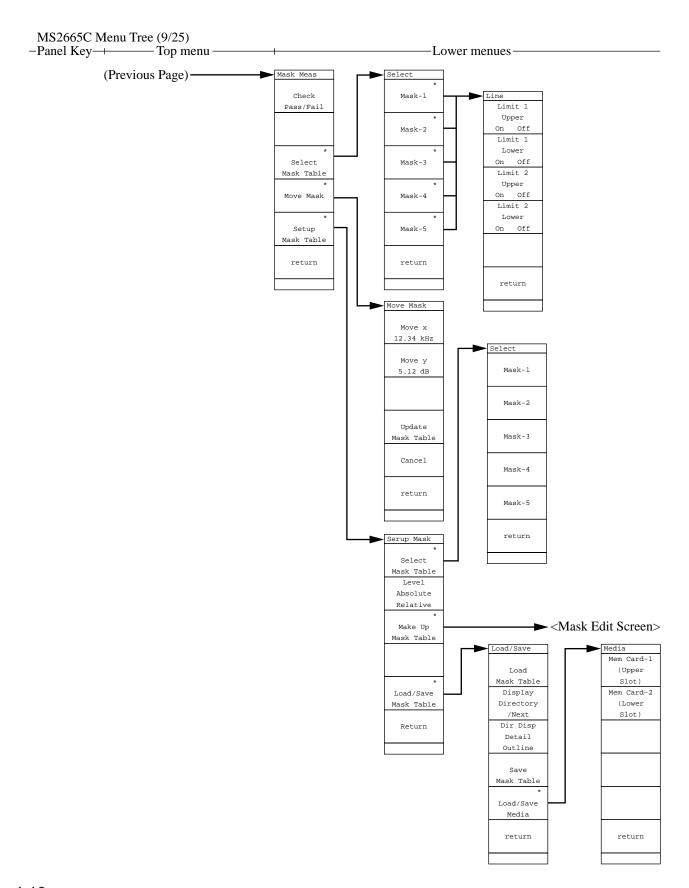
#4 Channel Power Measure: Power with in the band indicated by zone marker is measured. It is possible to set an

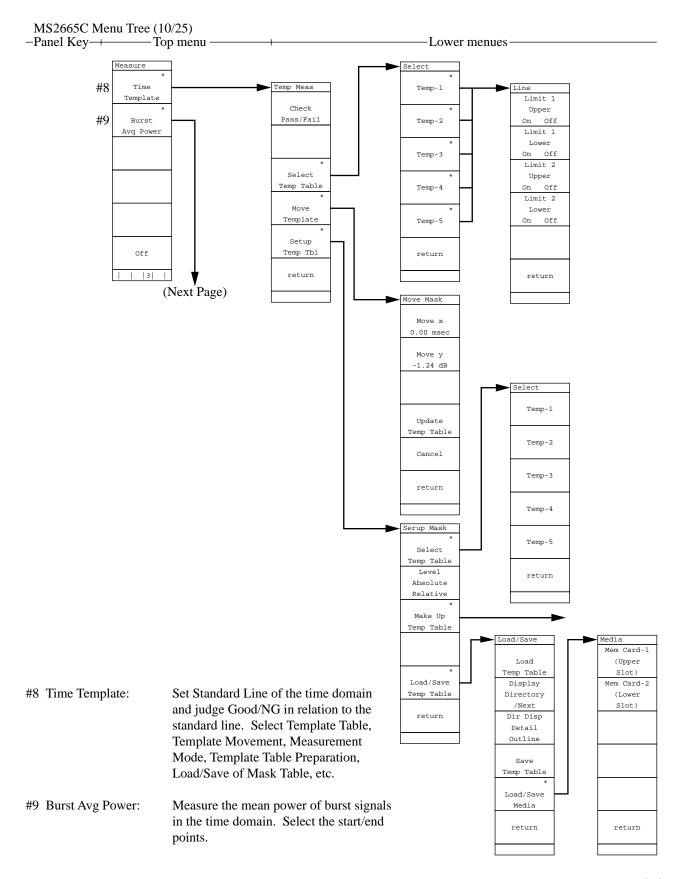
arbitrary calibration value.

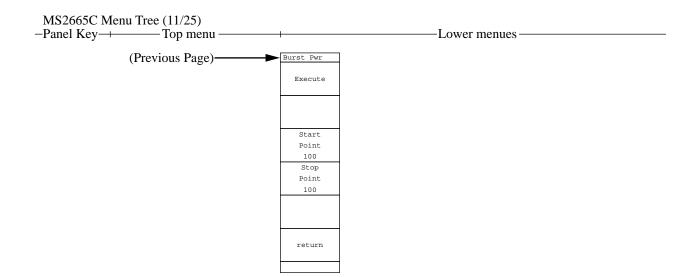
#5 Occ BW Measure: Measure the occupied bandwidth.

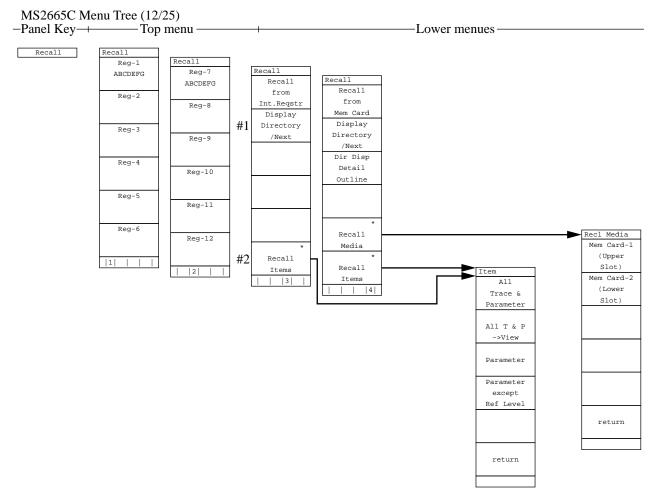
Select the X dB DOWN or N % of POWER mode.

#6 Adj ch pwr Measure: Measure leak power from adjacent channels.

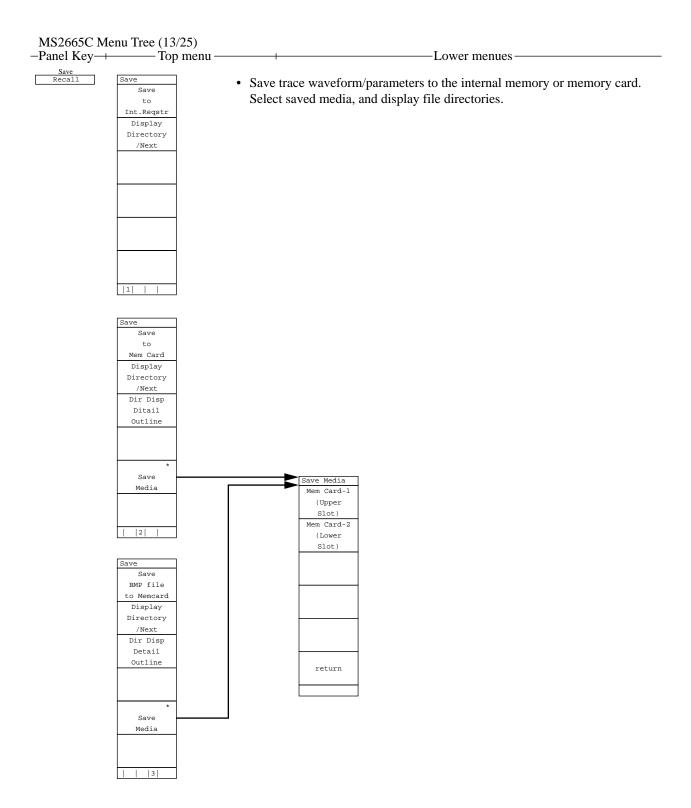

Select Channel Separate, Channel Bandwidth and Measurement Mode (Method), On/Off of ACP Graph, On/Off of Channel Center Line and On/Off of Channel BW Line, Upper Channel Lower Channel or Both Channel at

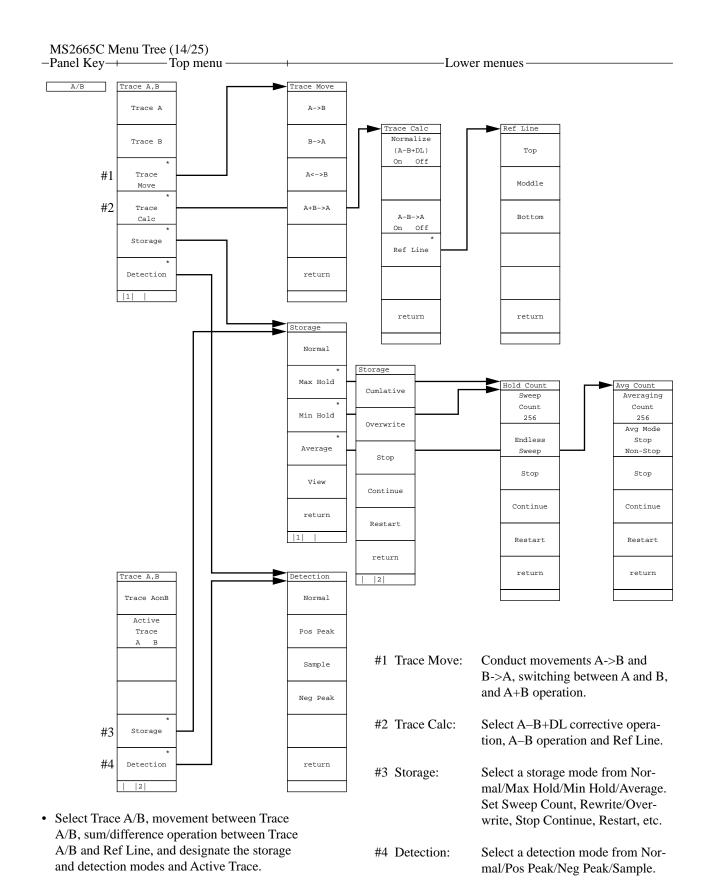

Channel, Lower Channel or Both Channel, etc.

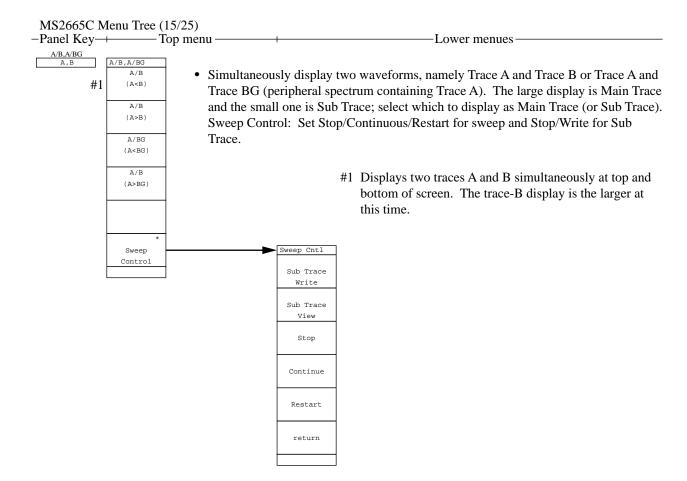

#7 Mask: Set Standard Line of the frequency domain and judge Good/NG in relation to the standard

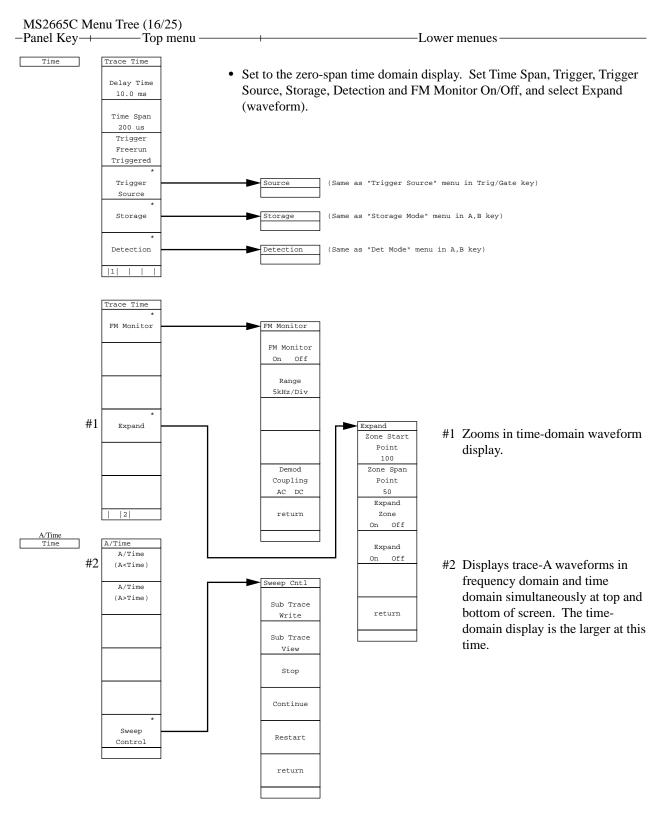

line. Select Mask Table, Mask Movement, Measurement Mode, Mask Table Preparation,

Load/Save of Mask Table, etc.

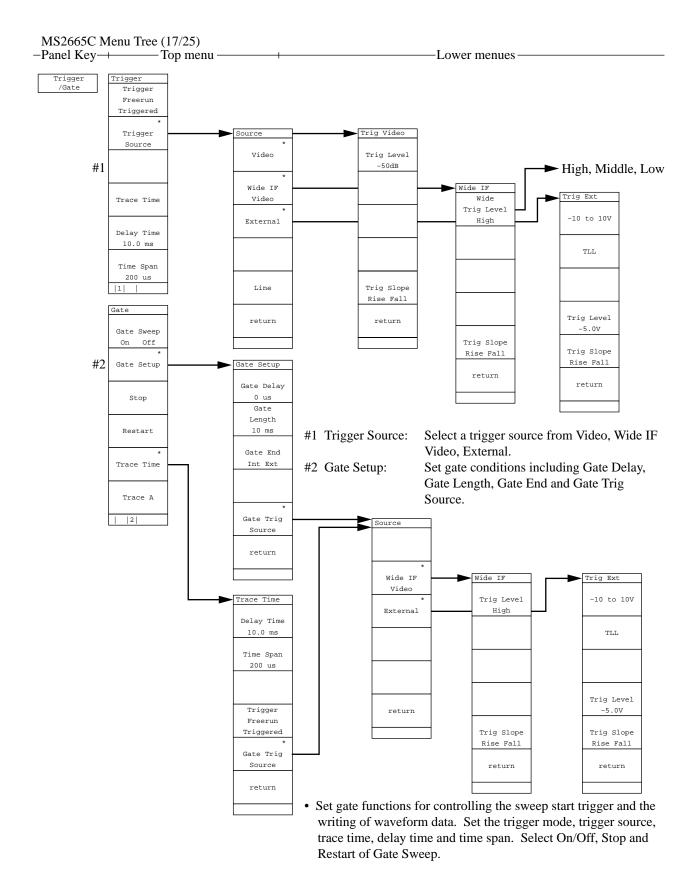


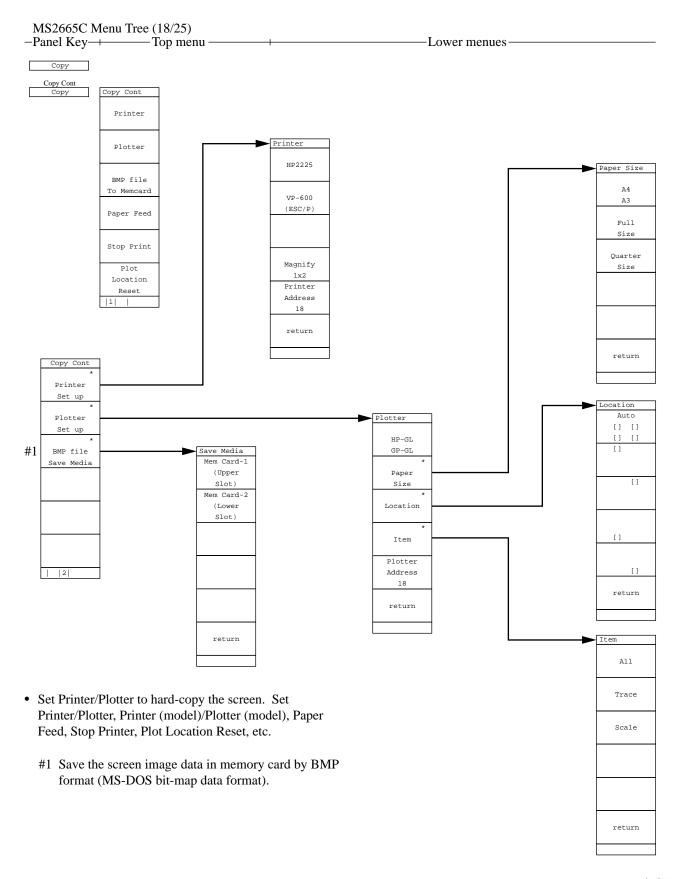


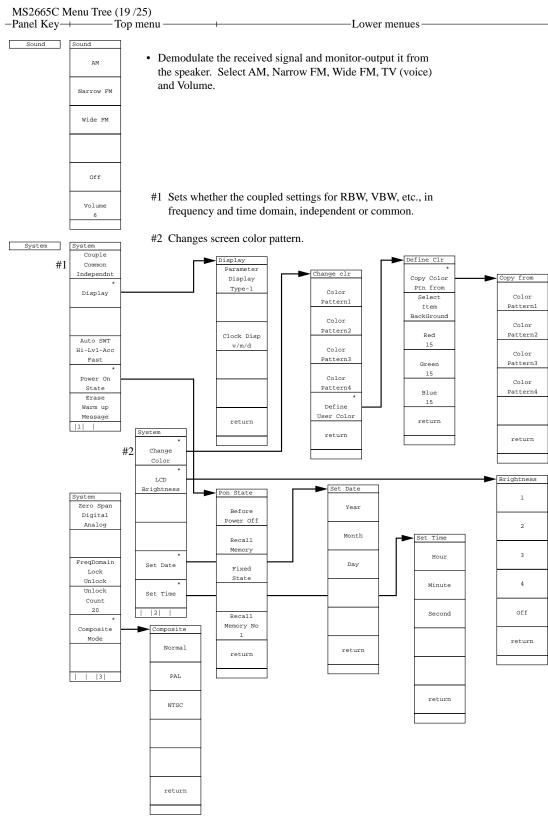


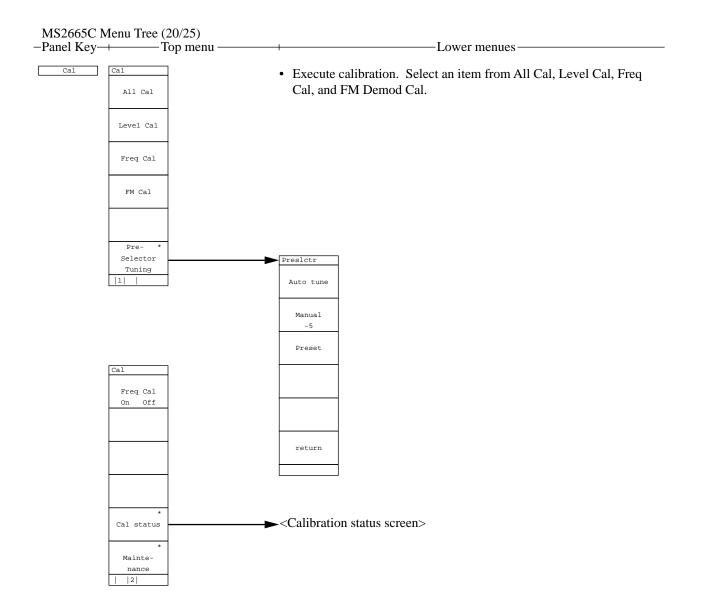


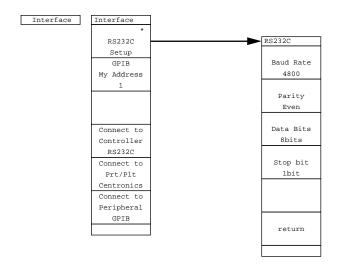
- Read out trace waveform/parameters from the internal memory or memory card. Select recall addresses and media/items, and display file directories.
 - #1 Displays list of internal-memory directories.
 - #2 Specifies items to be recalled (trace waveform, parameter, etc.).



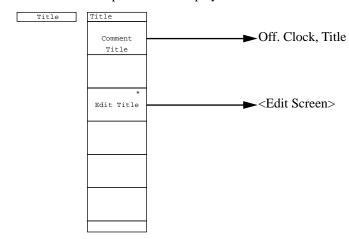


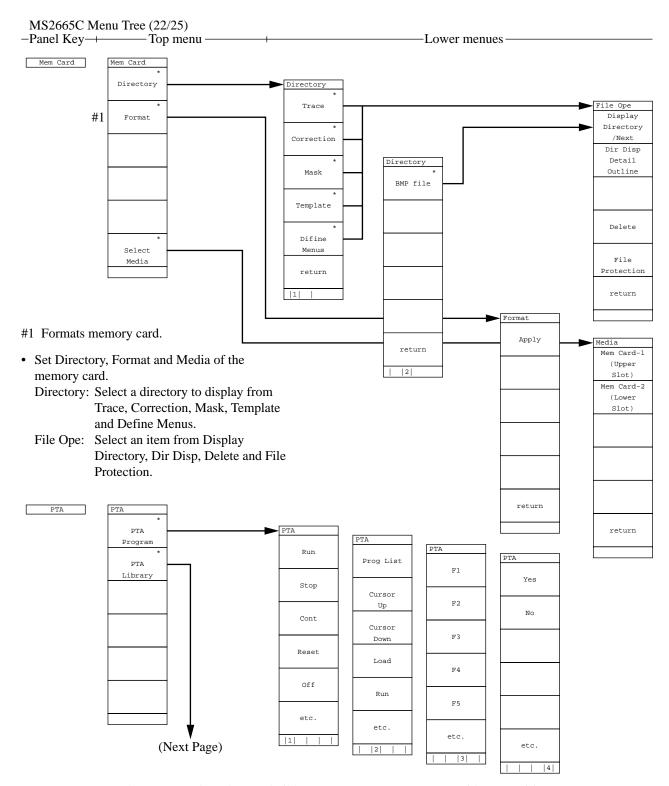



• Simultaneously display waveforms of Trace a and Time Domain. Which to display as Main Trace (or Sub Trace) can be selected.



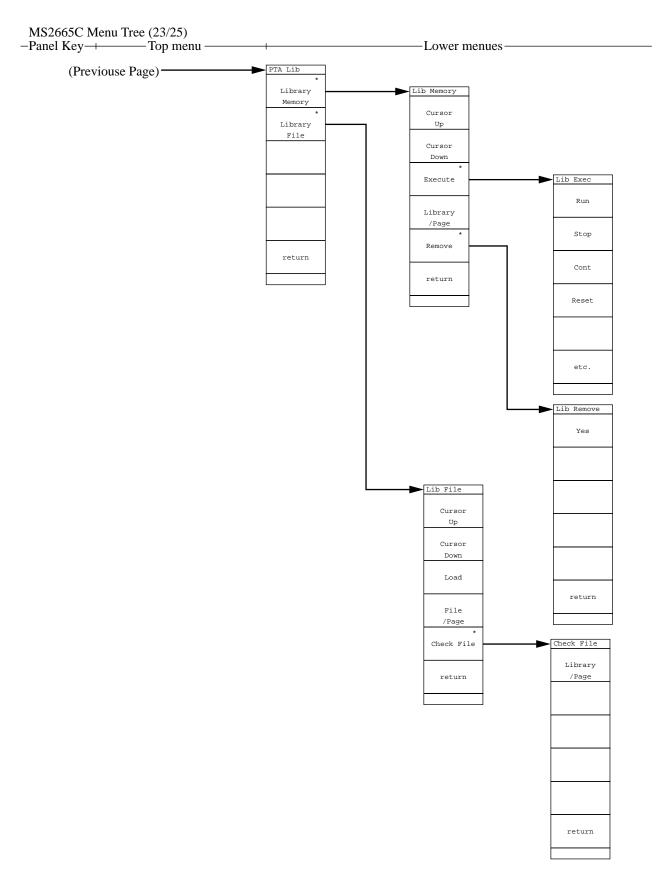
Set various modes of systems of this device.
 Set Couple, Display, Color Pattern, Define User Color, Time Sweep, Power On State, etc.

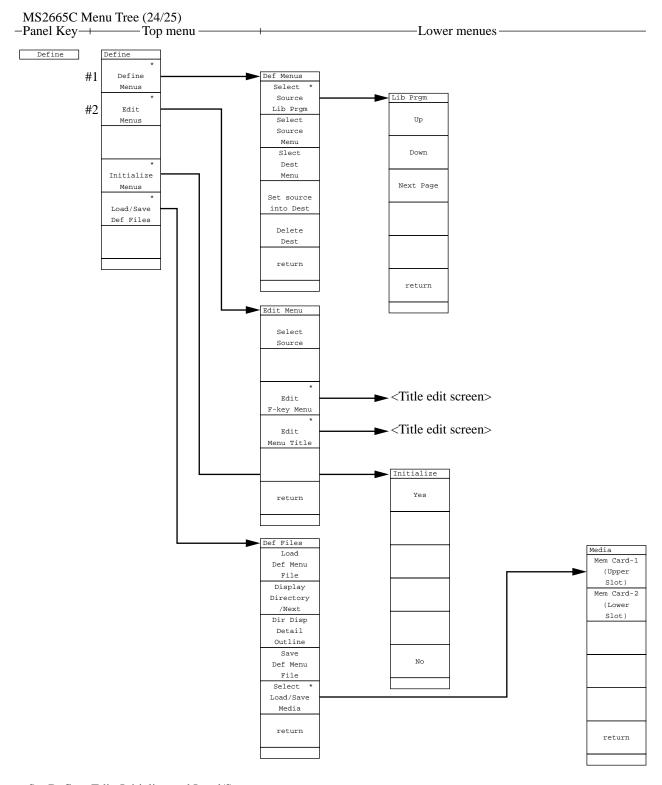



MS2665C Menu Tree (21/25)

> Set interfaces for external devices to connect. Select RS232C, Centronics or GPIB, and set the RS232C interface, GPIB address, etc.

• Input a title to display on the screen.



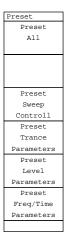


• Set PTA (personal test automation) that can build an auto measurement system without requiring external controllers.

PTA Program: Select one from Run, Stop, Cont Reset, Prog List, Load, etc.

PTA Library: Select one from Display/Run for the library program and Load/Check for the library file.

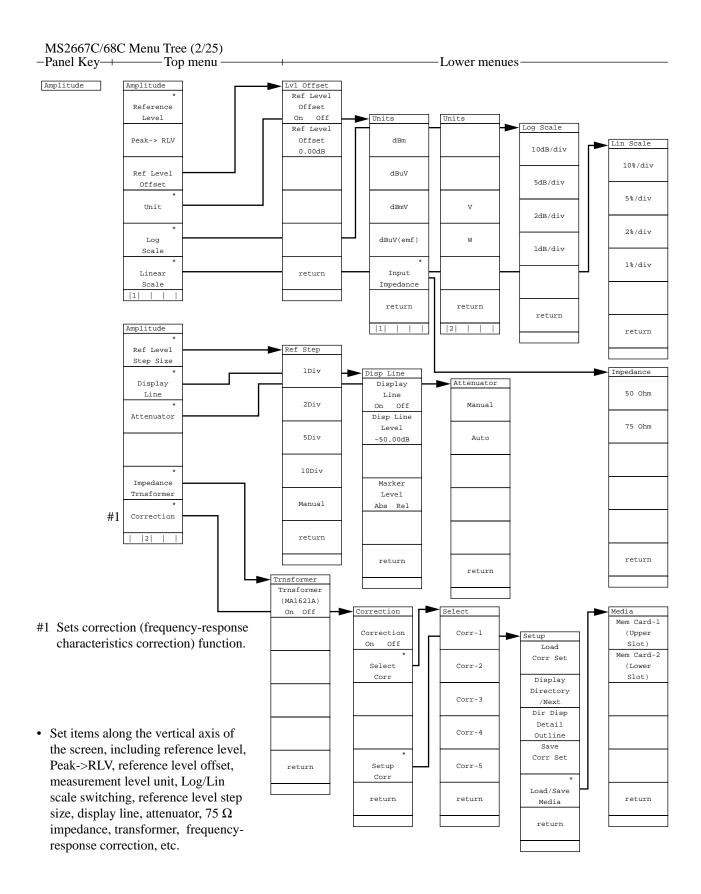
• Set Define, Edit, Initialize and Load/Save.

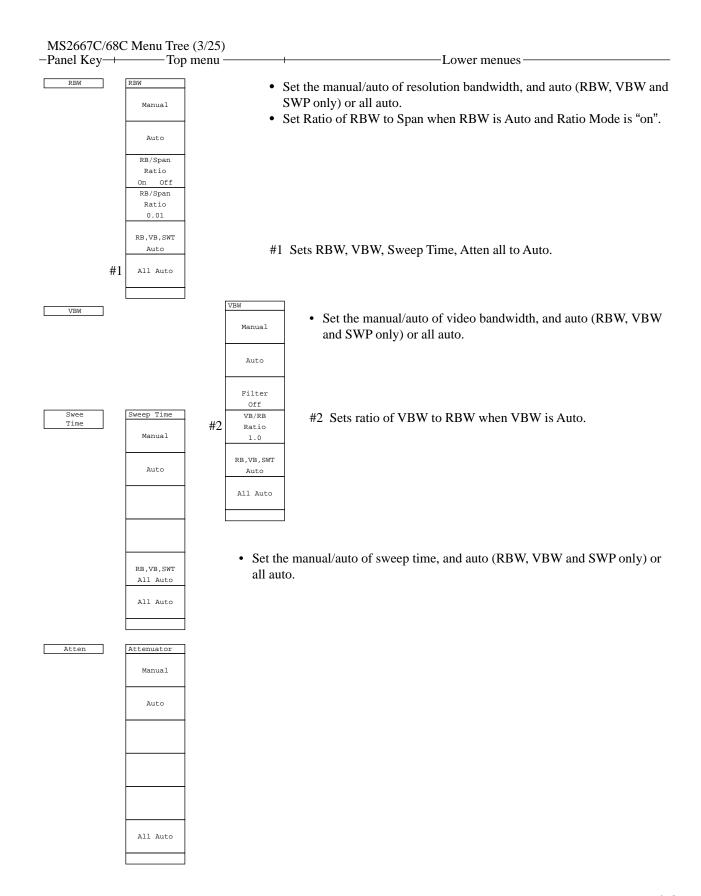

#1 Define Menus: Select one from Source Menu, Source Library, Destination Menu, etc., and set

Definition/Delete for the user menu.

#2 Edit Menu: Select a source and edit Menu Title.

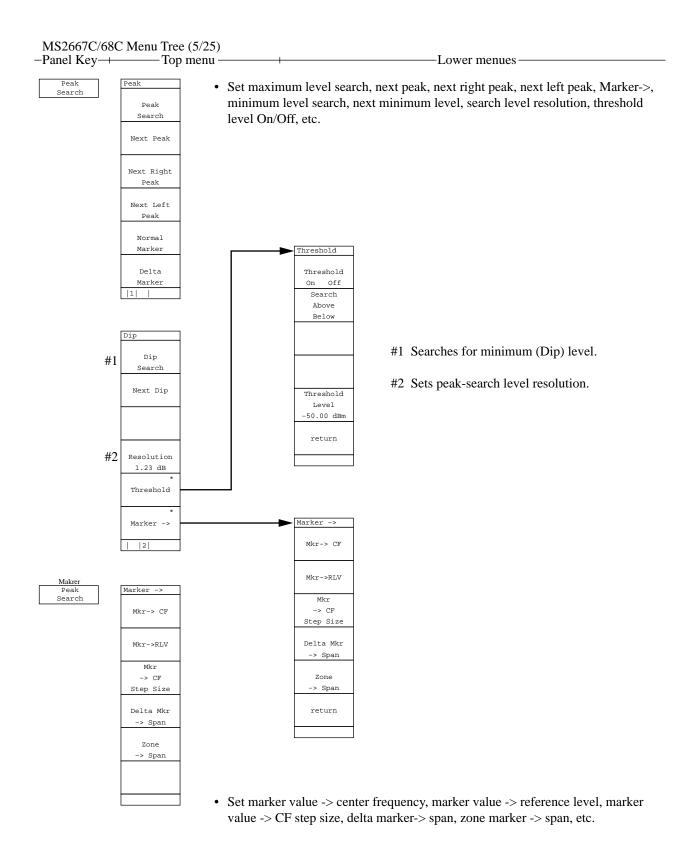

Preset




• Initialize measurement parameters. Select one from All, Sweep, Trace, Level and Freq/Time.

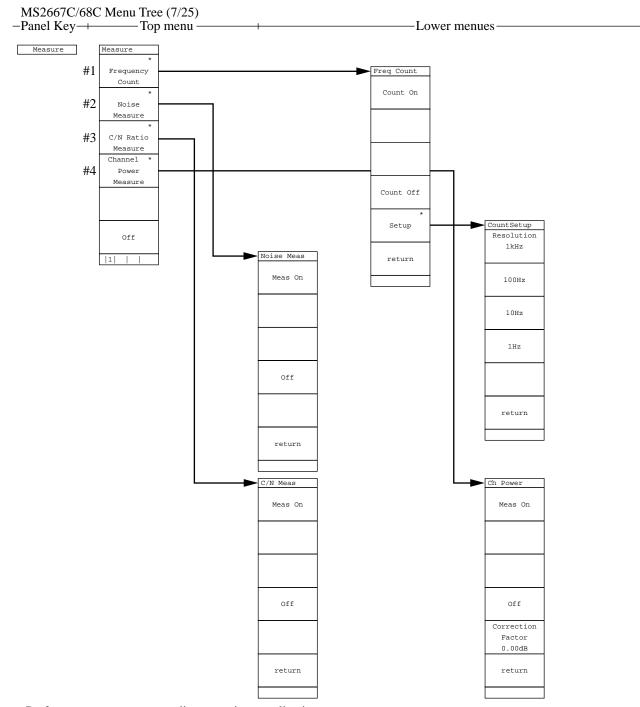
Hold

Local



MS2667C/68C Menu Tree (4/25) Top menu -Lower menues −Panel Key— Marker Marker • Set the selection of normal/delta/no marker, zone marker width, marker->, marker search mode, display line, marker tracking On/Off, zone sweep On/Off, etc. Normal Marker #1 Selects whether to search for maximum (Peak) or minimum (Dip) value in Marker zone marker. #2 Toggles zone sweep On/Off. Usually, the zone sweep is Off. At On, the Marker Off sweep time is reduced by sweeping only the zone specified by the zone marker. Zone Width Zone Width Spot Marker -> Marker -> 1Div Mkr-> CF |1| 2Div Mkr->RLV Marker Search Mkr 5Div -> CF Step Size 10Div -> Span Display Disp Line Display return Zone Line -> Span Disp Line Marker Level Tracking -50.00dBm On Off #2 Zone Sweep Marker On Off Level | |2| | | Abs Rel Multi Marker Multi Mkr Mkr List Marker return Off Off Manual Set Change Highest 10 Active Marker #3 Allocates up to 10 multi-markers Select sequentially from the peak level of the Harmonics Freq/Time Marker #4 Abs Rel signal displayed on screen. On with Level Auto Select #4 Allocates multi-markers to the harmonic Abs Rel Off with signals of frequency indicated by current Marker Auto Select marker. Manual Clear All #5 return #5 Function allowing user to select only Set multi-markers necessary for return measurement. • Set multi-marker On/Off, 10 multi-marker, harmonic #6 Select "absolute value" or "relative value

(display line)" to display marker level.


multi-marker, listing of multi-marker values,

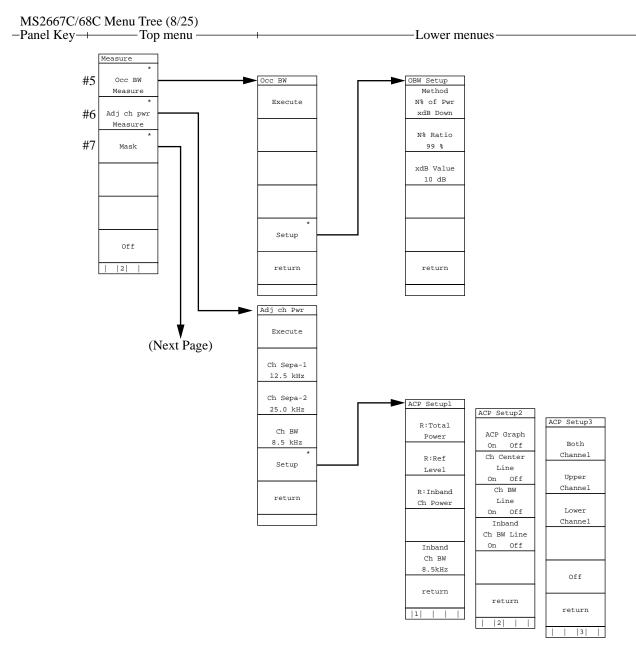
selection of necessary markers, etc.

• The soft-key menu defined by the user is displayed. (See "User Define".)

• Perform measurement according to various applications:

#1 Frequency Count: Measure marker frequency with a high resolution.

Select resolution from 1 kHz, 100 Hz, 10 Hz and 1 Hz.


#2 Noise Measure: Measure the noise power within zone marker.

#3 C/N Ratio Measure: Measure the ratio of carrier signal and noise power. Reference marker of the delta

marker shall be set to the carrier, and marker's zone width specifies the power measured.

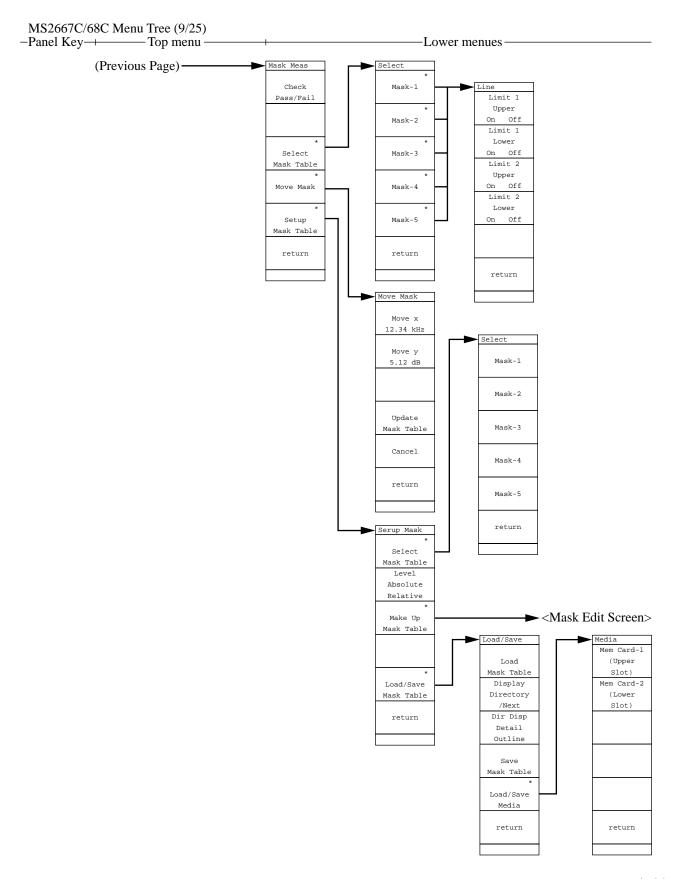
#4 Channel Power Measure: Power with in the band indicated by zone marker is measured. It is possible to set an

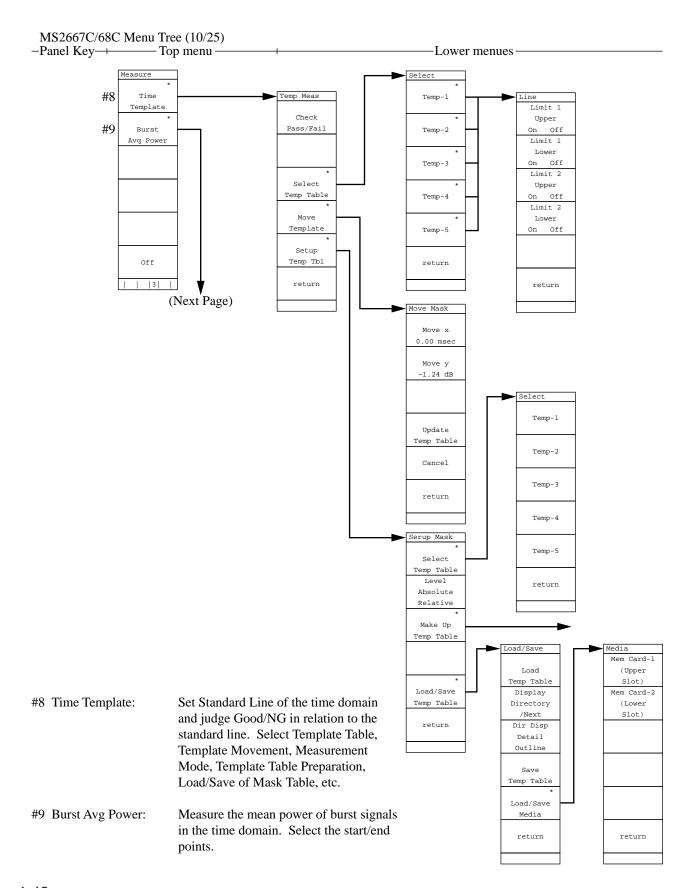
arbitrary calibration value.

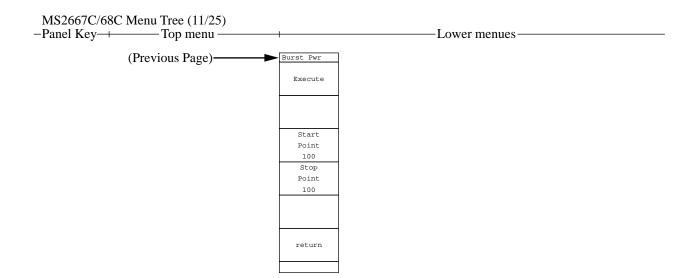
#5 Occ BW Measure: Measure the occupied bandwidth.

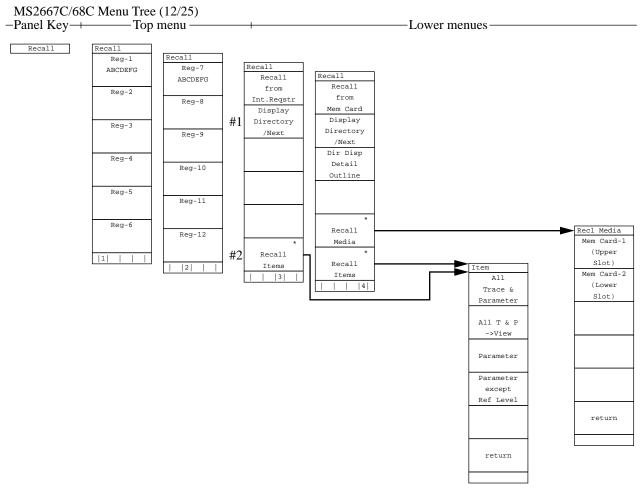
Select the X dB DOWN or N % of POWER mode.

#6 Adj ch pwr Measure: Measure leak power from adjacent channels.

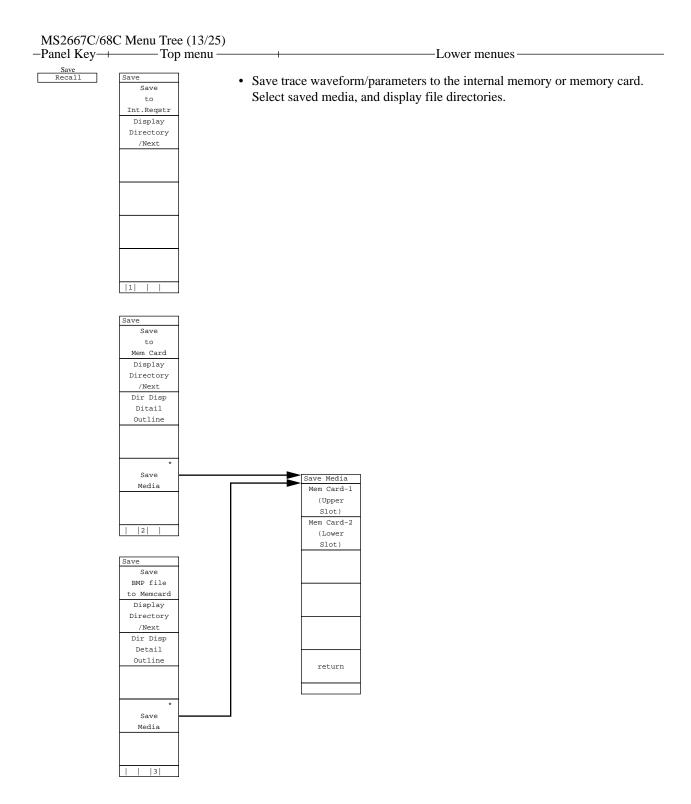

> Select Channel Separate, Channel Bandwidth and Measurement Mode (Method), On/Off of ACP Graph, On/Off of Channel Center Line and On/Off of Channel BW Line, Upper

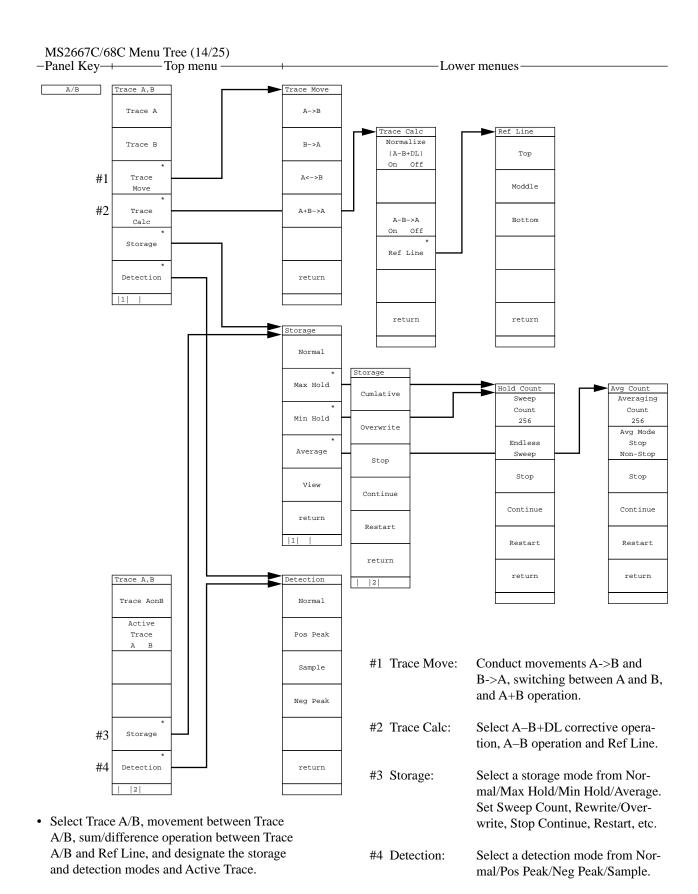

Channel, Lower Channel or Both Channel, etc.

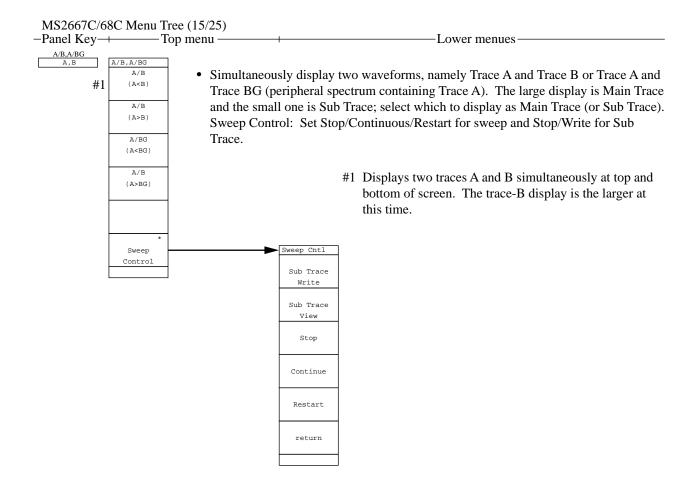

#7 Mask: Set Standard Line of the frequency domain and judge Good/NG in relation to the standard


line. Select Mask Table, Mask Movement, Measurement Mode, Mask Table Preparation,

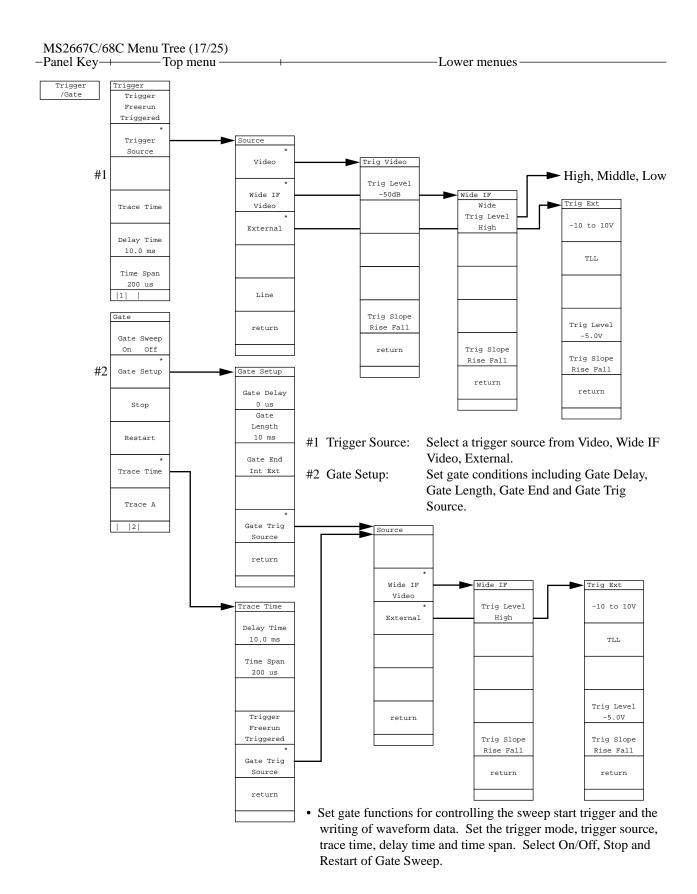
Load/Save of Mask Table, etc.



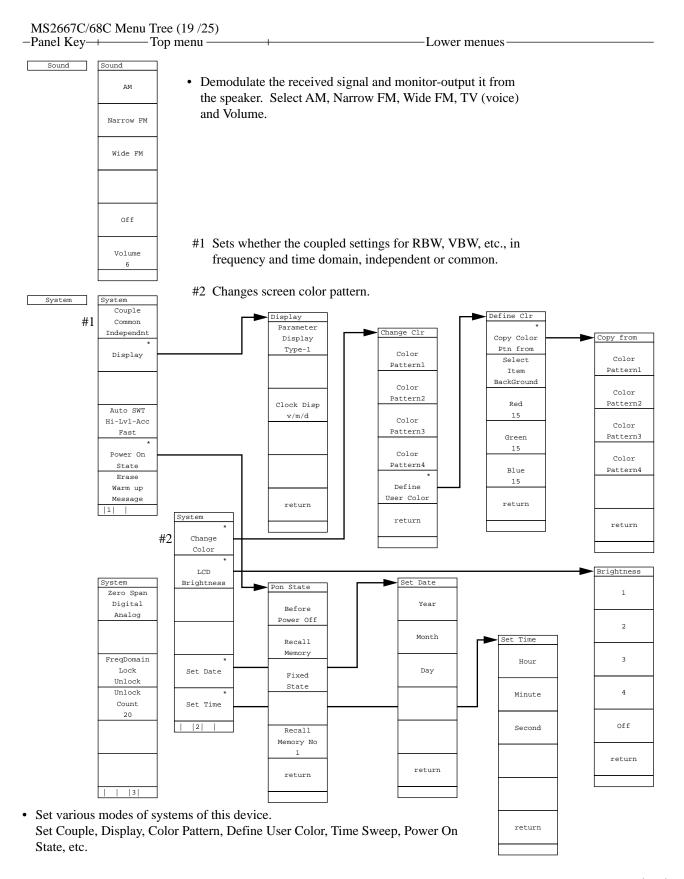


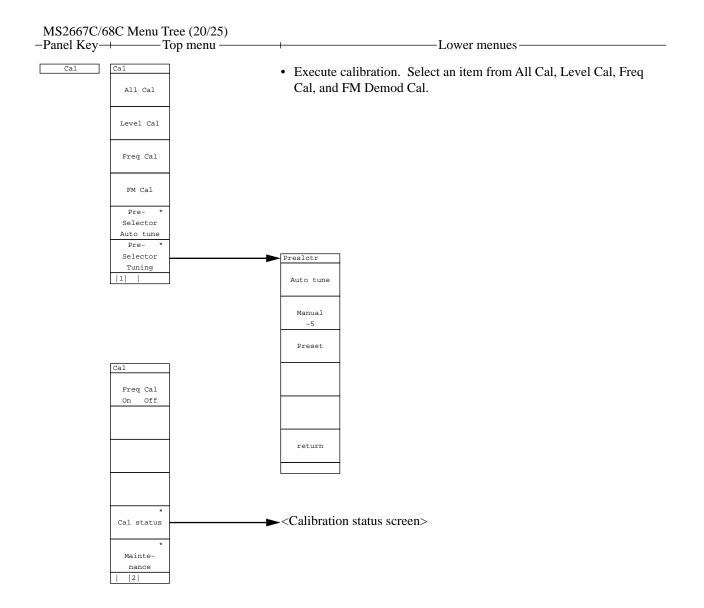


- Read out trace waveform/parameters from the internal memory or memory card. Select recall addresses and media/items, and display file directories.
 - #1 Displays list of internal-memory directories.
 - #2 Specifies items to be recalled (trace waveform, parameter, etc.).

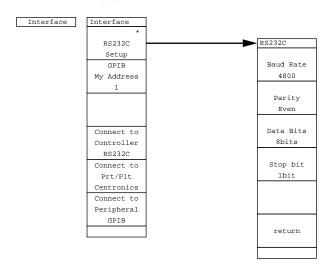


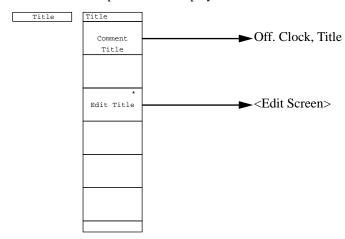


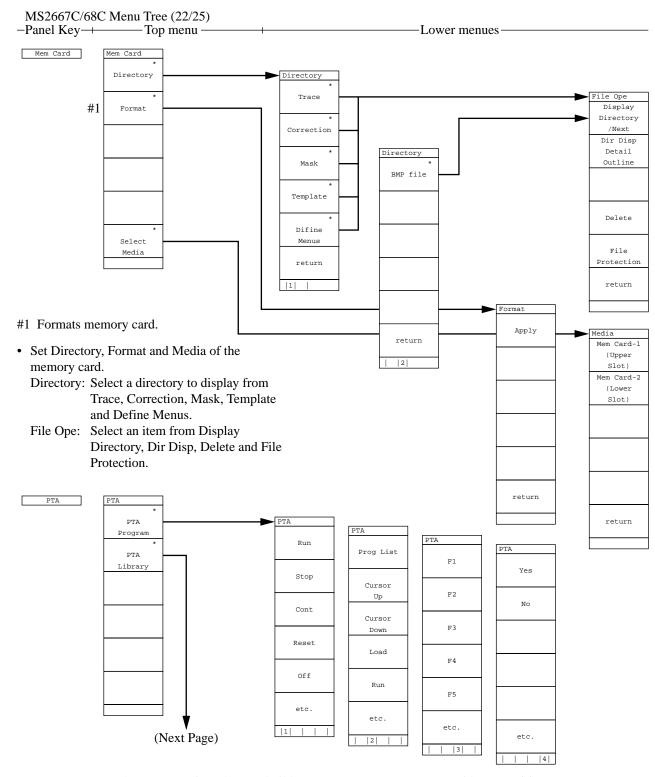




Simultaneously display waveforms of Trace a and Time Domain.
 Which to display as Main Trace (or Sub Trace) can be selected.

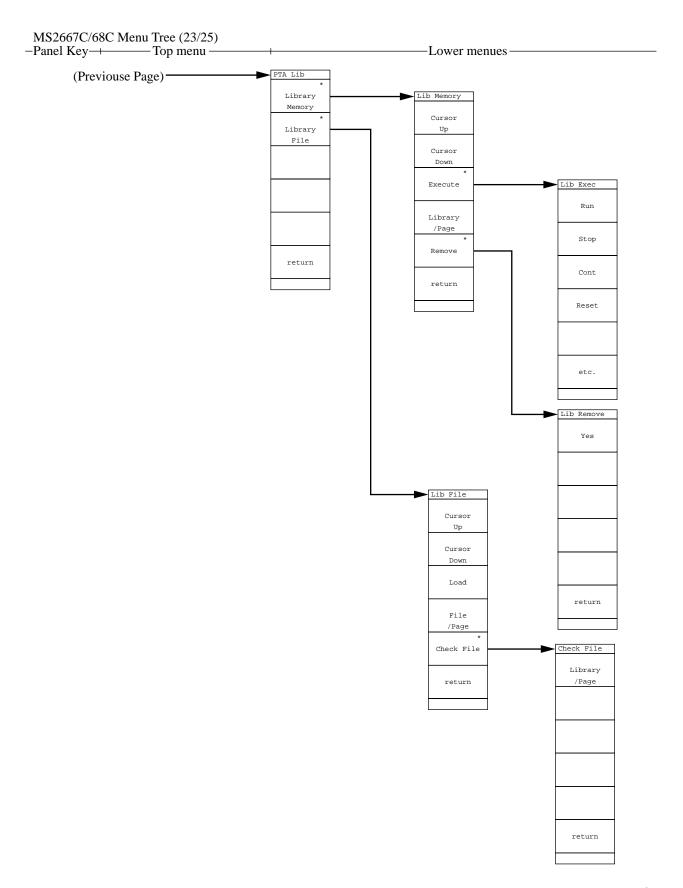


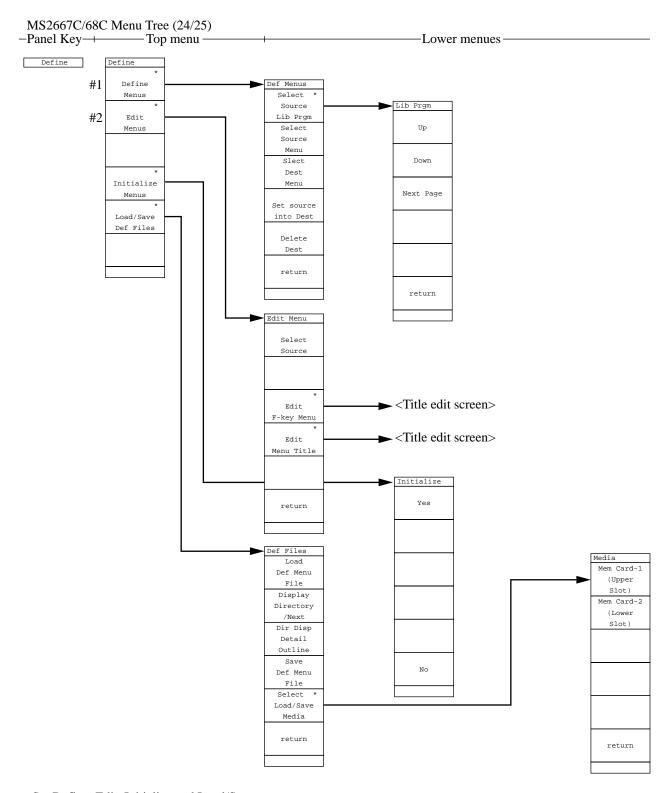




> Set interfaces for external devices to connect. Select RS232C, Centronics or GPIB, and set the RS232C interface, GPIB address, etc.

• Input a title to display on the screen.



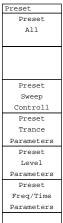


• Set PTA (personal test automation) that can build an auto measurement system without requiring external controllers.

PTA Program: Select one from Run, Stop, Cont Reset, Prog List, Load, etc.

PTA Library: Select one from Display/Run for the library program and Load/Check for the library file.

• Set Define, Edit, Initialize and Load/Save.


#1 Define Menus: Select one from Source Menu, Source Library, Destination Menu, etc., and set

Definition/Delete for the user menu.

#2 Edit Menu: Select a source and edit Menu Title.

Preset

• Initialize measurement parameters. Select one from All, Sweep, Trace, Level and Freq/Time.

Hold

Local

SECTION 5 BASIC OPERATION PROCEDURE

TABLE OF CONTENTS

Signal Display	5-3
Turn the power on	5-3
Execute automatic calibration	5-4
Set the signal to the center of the screen	5-4
Enlarge and display the signal	5-5
Marker Operation	5-6
Check of the zone marker function	
The "marker \rightarrow CF" function check	
"Measure" Function Check	5-8
Screen Hard Copy	5-9
Initialization (Restore shipment state)	5-10

SECTION 5 BASIC OPERATION PROCEDURE

The basic operation procedure of this equipment is explained here. The operations are listed on the right. Also, the explanation will advance assuming that a 2 GHz signal is applied to the input connector. Please read this manual while operating this equipment.

: Panel key, — : Soft key)

<Actual operations>

- (I) Signal display
 - 1) Turn the power on,
 - 2) execute automatic calibration,
 - 3) set the signal to the center of the screen, and
 - 4) enlarge and display the signal.
- (II) Marker operation

Check of the zone marker function.

The "marker \rightarrow CF" function check.

- (III) "Measure" function check
- (IV) Screen hard copy

Signal Display

Turn the power on

Press the standby button on the rear panel, then press the power switch (0) on the front panel. In this case, continue pressing the power switch for one second or more.

Press Preset key.

Press Preset All key in the menu.

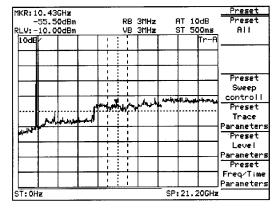


Fig. 5-1

The power is turned on/off only when the power switch is pressed for one second or more. This prevents the power from being turned on/off easily by mistake.

When panel key (hard key) is pressed, the related soft key menu is displayed.

Partial resettings are enabled. This resetting includes only the display-related resetting or the resetting of special modes such as zone sweep.

Execute automatic calibration

Wait after switching on the power supply of the machine (warm up period) till the internal temperature becomes stable. This period is approximately 10 minutes.

After warm up, execute automatic calibration.

Press Shift key then $\boxed{0}$ key.

Select All Cal from the menu displayed on the display.

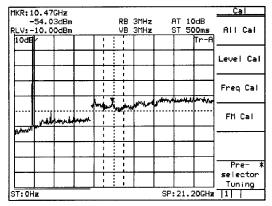


Fig. 5-2

Automatic Calibration is carried out by using an internal source without need for any external cable connection.

See "Detailed Operation Instructions" for detail information about contents of calibration.

Set the signal to the center of the screen

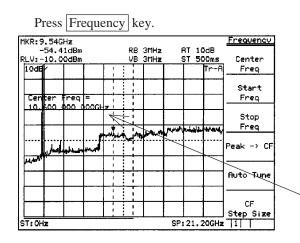


Fig. 5-3

When pressing Frequency, Span, Amplitude or Coupled Function key (s) which is used frequently, Center Frequency, Span, Reference Level, RBW or VBW function is selected and numeric value for the function can be entered into Entry area. This reduce key operation times.

This display section is called Entry area. Selecting the menu displays the current set value of the parameter. The set value can be changed by entering data in Entry area.

Press Menu On/Off key

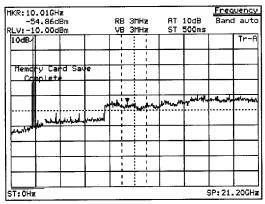


Fig. 5-4

The display of the soft key menu can be switched on/off using Menu On/Off key. When the menu disappears, the scale is enlarged. Also, when the menu is displayed, the scale is reduced.

Press Menu On/Off key to return to previous screen.

Use the ten-key pad (numeric keys) to enter 2 GHz.

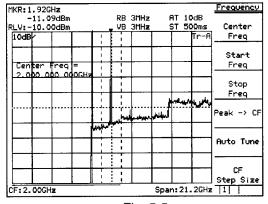


Fig. 5-5

The following three methods to input numeric values to parameters are provided: direct input by the ten-key pad (numeric keys), up/down keys, and rotary knob.

Enlarge and display the signal

Press $\overline{\text{Span}}$ key, then press the $\overline{\text{V}}$ down key several times to enlarge the signal display.

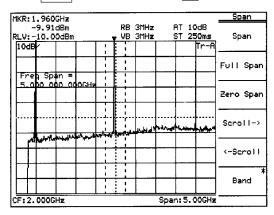


Fig. 5-6

Marker Operation

Here, checks that the signal frequency and level are displayed in a marker display area. The zone marker automatically fetches the highest level signal within the zone and displays the frequency and level.

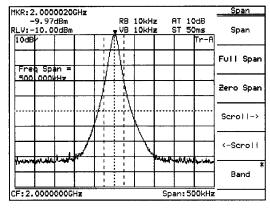


Fig. 5-7

To check Marker \rightarrow CF function, shift the signal from the center intentionally.

Press Frequency key and More key in order, and then $\underline{Scroll} \rightarrow \text{key two times}$.

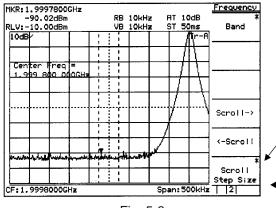


Fig. 5-8

The soft key menu marked by an asterisk on the upper right indicates that the menu can further be opened by pressing the key. Adversely, the soft key menu not marked indicates that the menu cannot be opened any more, so to speak, the end of menu opening.

The following items can easily be checked by the soft key menu tab: How many pages of the soft key menu being displayed currently are there?, and what page is displayed now?

To turn over the page, press More key.

Press Peak Search key.

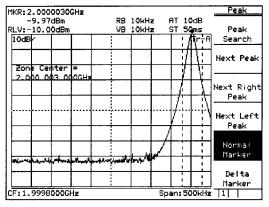


Fig. 5-9

The marker fetches the signal.

*Advanced operation memo: It is convenient that the page can also be turned over by repeatedly pressing the panel key. This method is used when key(s), such as Measure key, has a number of pages. Besides, the Freq/Ampl and Marker-related keys do not turn over the page by repeatedly pressing the panel key. For these keys, because the first page is important specially, it should always be displayed when the panel key is pressed.

Press More key and marker \rightarrow key in order.

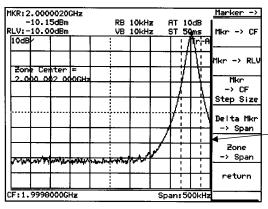


Fig. 5-10

When the soft key menu is pressed, a menu of function related to the menu is further displayed. In this case, as shown in the figure on the left, the thick line (the line on the preceding page) is displayed at the left of the soft key menu. This indicates that a new menu is overlapped with the preceding page.

Press <u>marker</u> \rightarrow CF key.

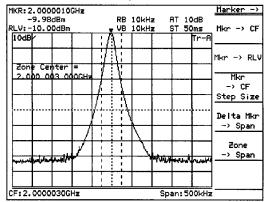


Fig. 5-11

The page opened by pressing the soft key can return to the preceding page by the <u>Return</u> key. Besides, it can be checked that which soft key menu was pressed previously to open the current menu, as the menu title is displayed on the upper row of the soft key.

Here, return to the screen of Fig. 5-8 and ensure that the screen changes to that of Fig. 5-11 only by pressing the \rightarrow CF key.

"Measure" Function Check

Press Preset key and Preset All key in order.

Press Peak Search key.

If the zero beat signal level (local feed through) is larger than the signal level and the marker fetches the 1st Local feed through, press "Next peak" key and put the marker on the signal.

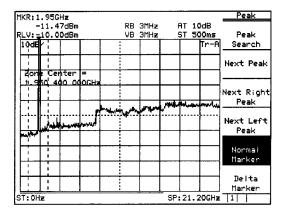


Fig. 5-12

Press the Measure key and Frequency Count key to set the function of high accuracy frequency measurement of the marker points.

Then, press the Count On key and start measurement.

Fig. 5-13

The soft-key menu display can be switched On/ Off by the Menu On/Off key.

However, keys that condition setting is not possible unless a menu is On unconditionally make the soft-key menu display On when pressing a panel key.

From the screen after executing measurement, press another panel key and change parameters, and then, pressing again the Measure key will automatically return to the menu of this screen and not to page 1 of the menu (page learning function).

It is a useful function when repeating measurement.

The frequency of marker points is displayed at the top left of the screen.

Incidentally, the internal counter correctly operates even at the full span condition, so an operation to reduce frequency span otherwise required is not necessary in this model.

Screen Hard Copy

The screen can be hard-copied with the VP-600 printer (Epson) via an RS232C interface, and the procedures are described below:

- 1) As illustrated below, connect the RS-232C connector and printer with an attached RS-232C cable.
- 2) Press the Copy key, and the currently displayed screen is hard-copied.

 If the printed copy is improper, check if the RS-232C interface is correctly set in the following sequence.
- 3) Press the Shift key and then the Interface key.
- 4) Press the <u>Connect to Controller</u> key several times to get None on the display, and press the <u>Connect to Prt/Plt</u> key several times and get RS-232C on the display.
 Now the printer can be operated with RS-232C.
- Press the <u>RS232C Setup</u> key and set so that (or check if) the setting of RS-232C interface is the same between the main body and printer.

 (For the setting/checking of the RS-232C interface on the printer side, refer to the instruction manual of the printer.)
- 6) Press the Shift key and then the Copy Cont key.
- 7) Press the <u>Printer/Plotter</u> key and select Printer.
- 8) Press the <u>Printer Setup</u> key, and then press the <u>VP-600</u> key.
- 9) Press the Magnify key several times and make the display 1×1 .
- 10) Press the Copy key, and the currently displayed screen is hard-copied.

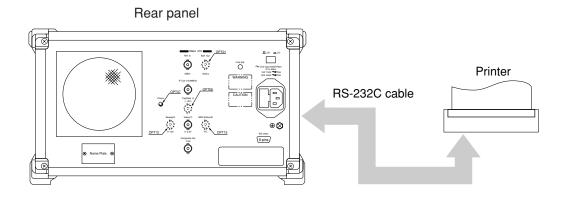


Fig. 5-14

Initialization (Restore shipment state)

This section describes how to initialize a parameter and waveform data that is not initialized by Preset key, like a correction factor, a standard line, a PTA program, Config information, etc.

1) Turn the power on, pressing the Preset key. Please continue pressing the Preset key until beep sounds. Beep sounds about 5 seconds later, after turning on the power switch.

SECTION 6 PERFORMANCE TESTS

In this section, measuring instruments, setup and operations necessary for conducting performance tests of MS2665C equipped with a reference oscillator (Option 01) and MS2667C/68C are described.

TABLE OF CONTENTS

Requirement for Performance Tests	6-3
Instruments Required for Performance Test	6-4
Performance Test	6-6
Reference oscillator frequency stability	6-7
Frequency readout accuracy	6-9
Frequency span readout accuracy	6-14
Resolution bandwidth (RBW) and selectivity	6-18
Sideband phase noise	6-24
Frequency measurement accuracy	6-27
Amplitude display linearity	6-29
Frequency response	6-33
Reference level accuracy	6-39
Average noise level	6-42
Second harmonic distortion	6-47
Resolution bandwidth (RBW) switching uncertainty	6-50
Input attenuator (RF ATT) switching uncertainty	6-53
Sweep time and time span accuracy	6-56
Service	6-60

SECTION 6 PERFORMANCE TESTS

Requirement for Performance Tests

Performance tests are used as preventive maintenance to prevent degradation of the MS2665C/67C/68C performance before it occurs.

Use the performance tests whenever necessary such as at acceptance and periodic inspection of the MS2665C/67C/68C and to verify performance after repair. Execute the performance tests listed below to verify the MS2665C/67C/68C performance at acceptance inspection, periodic inspection and after repair.

- Reference oscillator frequency stability
- Frequency readout accuracy
- · Frequency span readout accuracy
- · Resolution bandwidth and selectivity
- · Sideband phase noise
- Frequency measurement accuracy
- · Amplitude display linearity
- Frequency response
- Reference level accuracy
- Average noise level
- · Second harmonic distortion
- Resolution bandwidth (RBW) switching uncertainty
- · Input attenuator switching uncertainty
- Sweep time and time span accuracy

Execute the performance tests at regular intervals as preventive maintenance for important evaluation items. We recommend that the performance be inspected regularly once or twice a year.

If the specifications are not met at the performance tests, please contact Anritsu Corporation.

Instruments Required for Performance Test

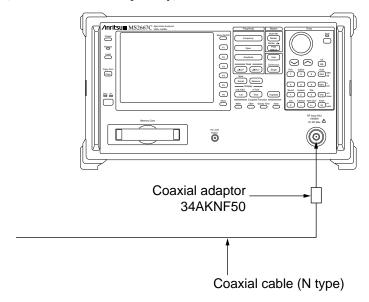
A list of instruments required for performance test is shown below.

Instruments Required for Performance Test (1/2)

Recommended instrument name (Model name)	Required Performance †	Test item	
Synthesized signal generator (MG3633A)	 Frequency range 100 MHz to 1 GHz Resolution of 1 Hz possible Output level range -20 to 0 dBm Resolution of 0.1 dB possible SSB phase noise ≤130 dBc / Hz (at 10 kHz offset) Second harmonic ≤30 dBc Amplitude modulation (0 % to 100 %, 0.1 to 400 Hz) possible External reference input (10 MHz) possible 	Frequency-span display accuracy Resolution bandwidth, selectivity Sideband noise Amplitude display linearity Reference-level accuracy Second-harmonic distortion Resolution-bandwidth switching error Input-attenuator switching error Sweep-time and time-span accuracy	
Swept Frequency Synthesizer (69269A with Option 2A)	 Frequency range 10 MHz to 40.0 GHz Resolution of 2 kHz possible Output level range –20 to 0 dBm Resolution of 0.1 dB possible Pulse modulation possible Pulse width: 0.5 to 10 μs Repetitive cycle: 5 μs to 5 ms External reference input (10 MHz) possible 	Center-frequency display accuracy Frequency-span display accuracy Frequency measurement accuracy Frequency response Time-span accuracy	
Attenuator (MN510C)	 Frequency 100 MHz Maximum attenuation 70 dB (resolution 0.1 dB) possible with calibrated data 	Amplitude display linearity Input-attenuator switching error	

[†] Extracts part of performance which can cover the measurement range of the test item.

Instruments Required for Performance Test (2/2)


Recommended instrument name (Model name)	Required Performance †	Test item
Power meter (ML2437A)	 Main instrument accuracy ±0.02 dB Frequency range 10 MHz to 40.0 GHz (depending on the power sensor type) 	Frequency response Reference-level accuracy Input-attenuator switching error
Power sensor (MA2422A)	 Frequency range 10 MHz to 18 GHz Measurement power range -30 to +10 dBm Input connector N type 	Frequency response Reference-level accuracy Input-attenuator switching error
Power sensor (MA2424A)	 Frequency range 10 MHz to 40.0 GHz Measurement power range -30 to +10 dBm Input connector K type 	
50 Ω terminator (28S50)	 Frequency range DC to 40.0 GHz VSWR ≤ 1.2 	Average noise level
Low-pass filter (M-238C) (SAGE L20CA072)	• Attenuation ≥70 dB (at frequency: 2× (10 MHz and 1 GHz))	Second-harmonic distortion
Frequency counter (MF1601A)	10 MHz measurement possible Number of display digits: 10 • External reference input (10 MHz) possible	Reference-oscillator frequency stability
Frequency standard	 Frequency 10 MHz Stability ≤ 1 × 10⁻⁹/day 	Reference-oscillator frequency stability Frequency readout accuracy Frequency measurement accuracy

[†] Extracts part of performance which can cover the measurement range of the test item.

Performance Test

The warm-up time depends on the test item. For test item other than oscillator frequency, warm-up the equipment for at least for thirty minutes and test the performance after the MS2665C/67C/68C stabilizes completely. Also, begin measurement after taking the warm-up time of the calibration instrument into full consideration. In addition, the test must be conducted at room temperature; there must be little AC power supply voltage fluctuation, and no noise, vibration, dust, humidity, etc.

In case of MS2667C/68C, if coaxial cable for the performance test is N type connector, connect the coaxial adaptor 34AKNF50 (DC to 20 GHz, sold separately) to the MS2667C/68C.

Reference oscillator frequency stability

The 10 MHz reference oscillator is tested for frequency stability.

In case of MS2665C, 10 MHz reference oscillator is option 01.

Stability is determined by measuring frequency variation after 24 hours and after 48 hours of power on at ambient temperatures of 0° C and 50° C.

In case of MS2665C, if a device is not to mount Option 01, this test is not available since there is no 10 MHz reference buffer output.

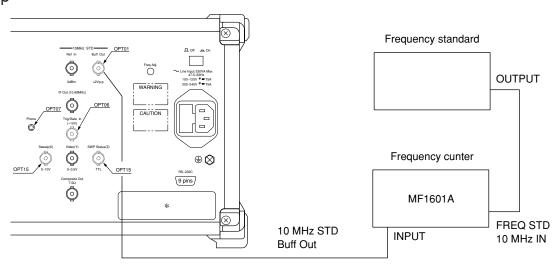
(1) Specifications

■ Reference oscillator

• Frequency: 10 MHz

• Aging rate: $\leq \pm 2 \times 10^{-8} / \text{day}$

After 24 hour warm-up at 25°C ±5°C


• Temperature stability: $\leq \pm 5 \times 10^{-8}$ at 0 and 50°C referred to frequency at 25°C

(2) Test instruments

• Frequency counter: MF1601A

• Frequency standard: with stability of $\leq \pm 1 \times 10^{-9}$ /day

(3) Setup

Reference Oscillator Frequency Stability Test

(4) Procedure

Aging rate/day: Test this at the ambient temperature $\pm 2^{\circ}$ C in a vibration-free place.

Step	Procedure						
1	Set the change over switch (FREQ STD: INT/EXT) on the MF1601A counter rear panel to EXT.						
2	Set the power supply switch on the spectrum analyzer rear panel to On and then the Power switch on the spectrum analyzer front panel to On.						
3	Measure the frequency using the counter with 0.1 Hz resolution after 24 hours have passed after turning the power ON.						
4	Measure the frequency using the counter after 24 more hours have passed from the step 3 measurement.						
5	Calculate the stability by using the following equation.						
	Frequency stability = (2nd reading of the counter) – (1st reading of the counter) (1st reading of the counter)						

Temperature stability: Test this performance in a vibration-free constant-temperature chamber.

Step	Procedure						
1	Set up the spectrum analyzer in a constant-temperature chamber at 25°C in the same setup.						
2	Set the LINE and Power switches on the spectrum analyzer to On and wait until the spectrum analyzer internal temperature stabilizes (approx. 1.5 hours after the chamber temperature stabilizes).						
3	When the internal temperature stabilizes, measure the frequency by using the counter with 0.1 Hz resolution.						
4	Change the chamber temperature to 50°C.						
5	When the chamber temperature and the spectrum analyzer internal temperature re-stabilize, measure the frequency by using the counter.						
6	Calculate the stability by using the following equation.						
	Temperature stability = $\frac{\text{(counter reading at } 50^{\circ}\text{C}) - \text{(counter reading at } 25^{\circ}\text{C})}{\text{(counter reading at } 25^{\circ}\text{C})}$						
7	Change the chamber temperature to 0°C and repeat steps 5 and 6.						

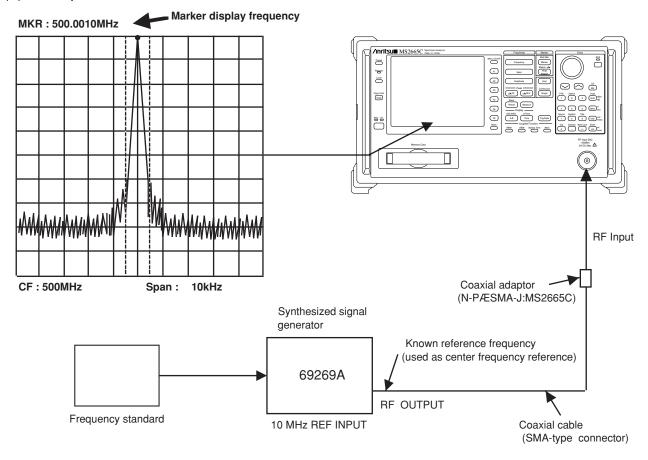
Frequency readout accuracy

Add the known frequency which serves as the center frequency reference to the spectrum analyzer as shown in the figure below and set CF (same value as the known reference frequency) and SPAN. At this time, check that the difference between the reading of the marker readout frequency (thick arrow in the figure) of the center frequency peak point, and the CF set value is \leq specifications.

As shown in the figure, the Synthesized Signal Generator uses the signal source phase-locked with the same accuracy as the frequency standard.

(1) Specifications

Frequency readout accuracy:


- MS2665C: ± (Readout frequency × frequency reference accuracy + span × span accuracy + 100 Hz × N);
 Span ≥ 10 kHz × N (after calibration)
- MS2667C/68C: \pm (Readout frequency \times frequency reference accuracy + span \times span accuracy); Span \geq 10 kHz \times N (after calibration)

(N is harmonic order at mixer)

(2) Test instruments

- · Synthesized signal generator: 69269A
- · Frequency standard

(3) Setup

Center-Frequency Readout-Accuracy Test

(4) Precautions

Set the signal generator output level to approx -10 to -20 dBm.

(5) Procedure

Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Operate Freq Cal.
3	Set the signal generator output frequency equal to the center frequency (500 MHz) in the following table.
4	Set the spectrum analyzer to the center frequency in the following table.
5	Set the span (10kHz) that corresponds to the center frequency (500MHz) in the table by using the numeric/unit keys.
6	Read the marker frequency (indicated by thick arrow in the figure on the previous page) and check that the value is within the range between the maximum and minimum values shown in the following table.
7	Repeat steps 3 to 6 for other combination of the center frequency and span according to the combinations shown in the following table.

Frequency read out accuracy test

• MS2665C

Signal	Center Span Frequency readout			ut		
generator	frequency	frequency	Band	Minimum value	Maker value	Maximam value
		10 kHz		499.999 66 MHz		500.000 34 MHz
500 MHz	500 MHz	200 kHz	0(1)	499.995 2 MHz		500.004 8 MHz
		100 MHz		497.6 MHz		502.4 MHz
		10 kHz		4.999 999 55 GHz		5.000 000 45 GHz
5 GHz	5 GHz	200 kHz	1-(1)	4.999 994 8 GHz		5.000 005 2 GHz
		100 MHz		4.997 6 GHz		5.002 4 GHz
	7.5 GHz	10 kHz	1+(1)	7.499 999 50 GHz		7.500 000 50 GHz
7.5 GHz		200 kHz		7.499 994 8 GHz		7.500 005 2 GHz
		100 MHz		7.497 6 GHz		7.502 4 GHz
	12 GHz	20 kHz	2+ (2)	11.999 999 06 GHz		12.000 000 94 GHz
12 GHz		200 kHz		11.999 994 6 GHz		12.000 005 4 GHz
12 0112		100 MHz		11.997 6 GHz		12.002 4 GHz
		1 GHz		11.976 GHz		12.024 GHz
	20 GHz	30 kHz		19.999 998 55 GHz		20.000 001 45 GHz
20 GHz		200 kHz	3+ (3)	19.999 994 3 GHz		20.000 005 7 GHz
		100 MHz		19.997 6 GHz		20.002 4 GHz
		1 GHz		19.976 GHz		20.024 GHz

• MS2667C

Signal	Center Span Frequency readout		ut			
generator	frequency	frequency	Band	Minimum value	Maker value	Maximam value
		10 kHz		499.999 5 MHz		500.000 5 MHz
500 MHz	500 MHz	200 kHz	0(1)	499.99 MHz		500.01 MHz
		100 MHz		495 MHz		505 MHz
		10 kHz		4.999 999 4 GHz		5.000 000 6 GHz
5 GHz	5 GHz	200 kHz	1-(1)	4.999 99 GHz		5.000 01 GHz
		100 MHz		4.995 GHz		5.05 GHz
		10 kHz		7.499 999 3 GHz		7.500 000 7 GHz
7.5 GHz	7.5 GHz	200 kHz	1+(1)	7.499 99 GHz		7.500 01 GHz
		100 MHz		7.495 GHz		7.505 GHz
		10 kHz		11.999 998 8 GHz		12.000 001 2 GHz
12 GHz	12 GHz	200 kHz	2+ (2)	11.999 99 GHz		12.000 01 GHz
12 0112		100 MHz		11.995 GHz		12.005 GHz
		1 GHz		11.95 GHz		12.05 GHz
		10 kHz		19.999 998 1 GHz		20.000 001 9 GHz
20 GHz	20 GHz	200 kHz	3+ (3)	19.999 99 GHz		20.000 01 GHz
20 0112	20 GHZ	100 MHz	3+(3)	19.995 GHz		20.005 GHz
		1 GHz		19.95 GHz		20.05 GHz
29 GHz	29 GHz	10 kHz		28.999 998 9 GHz		29.000 001 1 GHz
		200 kHz	4+ (4)	28.999 99 GHz		29.000 01 GHz
		100 MHz		28.995 GHz		29.005 GHz
		1 GHz		28.95 GHz		29.05 GHz

• MS2668C

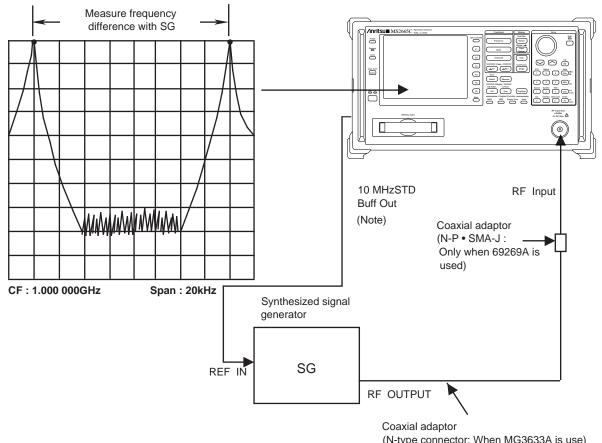
Signal	Center	Span	Band	Frequency readout		
generator	frequency	frequency	(L0 order)	Minimum value	Maker value	Maximam value
500 MHz	500 MHz	10 kHz 200 kHz 100 MHz	0 (1)	499.999 5 MHz 499.99 MHz 495 MHz		500.000 5 MHz 500.01 MHz 505 MHz
5 GHz	5 GHz	10 kHz 200 kHz 100 MHz	1-(1)	4.999 999 4 GHz 4.999 99 GHz 4.995 GHz		5.000 000 6 GHz 5.000 01 GHz 5.05 GHz
7.5 GHz	7.5 GHz	10 kHz 200 kHz 100 MHz	1+ (n=1) (1)	7.499 999 3 GHz 7.499 99 GHz 7.495 GHz		7.500 000 7 GHz 7.500 01 GHz 7.505 GHz
12 GHz	12 GHz	10 kHz 200 kHz 100 MHz 1 GHz	1+ (n=2) (2)	11.999 999 3 GHz 11.999 99 GHz 11.995 GHz 11.95 GHz		12.000 000 7 GHz 12.000 01 GHz 12.005 GHz 12.05 GHz
20 GHz	20 GHz	10 kHz 200 kHz 100 MHz 1 GHz	2- (n=4) (4)	19.999 999 1 GHz 19.999 99 GHz 19.995 GHz 19.95 GHz		20.000 000 9 GHz 20.000 01 GHz 20.005 GHz 20.05 GHz
29 GHz	29 GHz	10 kHz 200 kHz 100 MHz 1 GHz	3– (n=6) (6)	28.999 998 9 GHz 28.999 99 GHz 28.995 GHz 28.95 GHz		29.000 001 1 GHz 29.000 01 GHz 29.005 GHz 29.05 GHz
39 GHz	29 GHz	10 kHz 200 kHz 100 MHz 1 GHz	3– (n=6) (6)	38.999 998 7 GHz 38.999 99 GHz 38.995 GHz 38.95 GHz		39.000 001 3 GHz 39.000 01 GHz 39.005 GHz 39.05 GHz

Frequency span readout accuracy

Using the setup shown in the figure below, set the frequencies corresponding the 1st and 9th division from the left side of the screen scale with the SG. The frequency difference between the peak levels at the 1st and 9th divisions is equal to the frequency span×0.8.

(1) Specifications

Frequency span readout accuracy


MS2665C: ±2.5 % (span ≥10 kHz × N)
 MS2667C/68C: ±5 % (span ≥10 kHz × N)
 (N is harmonic order at mixer)

(2) Test instrument

• Synthesized signal generator: MG3633A

69269A

(3) Setup

(N-type connector: When MG3633A is use) (SMA connector: When 69269A is use)

Frequency Readout Accuracy Test

(Note) In case of MS2665C, if there is no buffer output for the reference oscillator (Option 01) on the rear panel, input a reference signal from an external 10 MHz frequency standard to the main body and signal generator.

(4) Precautions

Set the signal generator output level to approx. -10 to -20 dBm.

(5) Procedure

Step	Procedure
1	Press the [Preset] key.
2	Operate Freq Cal.
3	Connect the MG3633A output to the spectrum analyzer RF Input.
4	Set the spectrum analyzer as shown below:
	Span 20 kHz Center Freq 1000 MHz
5	Set the MG3633A output frequency to the f_1 frequency (999.992 MHz) shown in the table on the next page.
6	Adjust the MG3633A output frequency to set the spectrum peak at the 1st division from the left end of the screen scale. Remember the frequency as \mathbf{f}_1 '.
7	After setting the MG3633A output frequency to the f_2 frequency (1000.008 MHz), adjust it to set the spectrum peak at the 9th division. Remember the frequency as f_2 '.
8	Calculate $(f_2'-f_1')/0.8$ and check that the value is within the specified range (minimum to maximum values) shown in the table on the next page.
9	Repeat steps 4 through 8 for each frequency span with 1 GHz center frequency shown in the table on the next page.

Frequency-Span Readout-Accuracy Test

• MS2665C

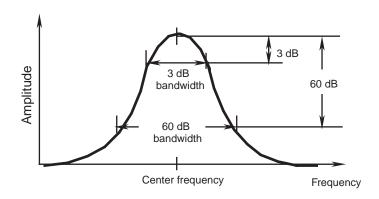
MS	2665C	Signal g	enerator	Results		
Center	Span	f	f	Minimum	$f_{2}' - f_{1}'$	Maximum
frequency	Эрап	1	f ₂	value	0.8	value
	20 kHz	0.999 99 2 GHz	1.000 008 GHz	19.5 kHz		20.5 kHz
	200 kHz	0.999 92 GHz	1.000 08 GHz	195 kHz		205 kHz
1 GHz	2 MHz	0.999 2 GHz	1.000 8 GHz	1.95 MHz		2.05 MHz
	10 MHz	0.996 GHz	1.004 GHz	9.75 MHz		10.25 MHz
	100 MHz	0.96 GHz	1.04 GHz	97.5 MHz		102.5 MHz
	2 GHz	0.2 GHz	1.8 GHz	1.95 GHz		2.05 GHz
	100 kHz	4.21 GHz	4.29 GHz	97.5 MHz		102.5 MHz
4.25 GHz	1 MHz	3.85 GHz	4.65 GHz	0.975 GHz		1.025 GHz
	8.5 MHz	0.85 GHz	7.65 GHz	8.2875 GHz		8.7125 GHz
	100 MHz	10.56 GHz	10.64 GHz	97.5 MHz		102.5 MHz
10.6 GHz	1 GHz	10.2 GHz	11 GHz	0.975 GHz		1.025 GHz
	21.2 GHz	2.12 GHz	19.08 GHz	20.67 GHz		21.73 GHz

• MS2667C

MS	2667C	Signal g	enerator	Results		
Center frequency	Span	f ₁	f ₂	Minimum value	$\frac{f_2' - f_1'}{0.8}$	Maximum value
	20 kHz	0.999 992 GHz	1.000 008 GHz	19 kHz		21 kHz
	200 kHz	0.999 92 GHz	1.000 08 GHz	190 kHz		210 kHz
1 GHz	2 MHz	0.999 2 GHz	1.000 8 GHz	1.9 MHz		2.1 MHz
	10 MHz	0.996 GHz	1.004 GHz	9.5 MHz		10.5 MHz
	100 MHz	0.96 GHz	1.04 GHz	95 MHz		105 MHz
	2 GHz	0.2 GHz	1.8 GHz	1.9 GHz		2.1 GHz
	100 kHz	4.21 GHz	4.29 GHz	95 MHz		105 MHz
4.25 GHz	1 GHz	3.85 GHz	4.65 GHz	0.95 GHz		1.05 GHz
	8.5 MHz	0.85 GHz	7.65 GHz	8.075 GHz		8.925 GHz
	100 MHz	9.96 GHz	10.04 GHz	95 MHz		105 MHz
10 GHz	1 GHz	9.6 GHz	10.4 GHz	0.95 GHz		1.05 GHz
	20 GHz	2 GHz	18 GHz	19 GHz		21 GHz
	100 MHz	14.96 GHz	15.04 GHz	95 MHz		105 MHz
15 GHz	1 GHz	14.6 GHz	15.4 GHz	0.95 GHz		1.05 GHz
	30 GHz	1.5 GHz	28.5 GHz	28.5 GHz		31.5 GHz

• MS2668C

MS	2668C	Signal g	enerator	Results		
Center	Span	f ₁	f ₂	Minimum	$f_2' - f_1'$	Maximum
frequency	Оран	' 1	'2	value	0.8	value
	20 kHz	0.999 992 GHz	1.000 008 GHz	19 kHz		21 kHz
	200 kHz	0.999 92 GHz	1.000 08 GHz	190 kHz		210 kHz
1 GHz	2 MHz	0.999 2 GHz	1.000 8 GHz	1.9 MHz		2.1 MHz
	10 MHz	0.996 GHz	1.004 GHz	9.5 MHz		10.5 MHz
	100 MHz	0.96 GHz	1.04 GHz	95 MHz		105 MHz
	2 GHz	0.2 GHz	1.8 GHz	1.9 GHz		2.1 GHz
	100 kHz	4.21 GHz	4.29 GHz	95 MHz		105 MHz
4.25 GHz	1 GHz	3.85 GHz	4.65 GHz	0.95 GHz		1.05 GHz
	8.5 MHz	0.85 GHz	7.65 GHz	8.075 GHz		8.925 GHz
	100 MHz	9.96 GHz	10.04 GHz	95 MHz		105 MHz
10 GHz	1 GHz	9.6 GHz	10.4 GHz	0.95 GHz		1.05 GHz
	20 GHz	2 GHz	18 GHz	19 GHz		21 GHz
	100 MHz	19.96 GHz	20.04 GHz	95 MHz		105 MHz
20 GHz	1 GHz	19.6 GHz	20.4 GHz	0.95 GHz		1.05 GHz
	40 GHz	2 GHz	38 GHz	38 GHz		42 GHz


Resolution bandwidth (RBW) and selectivity

If there are two input signals with the frequency difference corresponding to 3 dB bandwidth (of IF final stage), these signals can be resolved as two spectrum waveforms.

This is called the resolution bandwidth.

Selectivity can be improved by narrowing the 60 dB bandwidth. The selectivity is defined by the ratio of the filter width, in Hz, at the -3 dB point, as shown in the formula below.

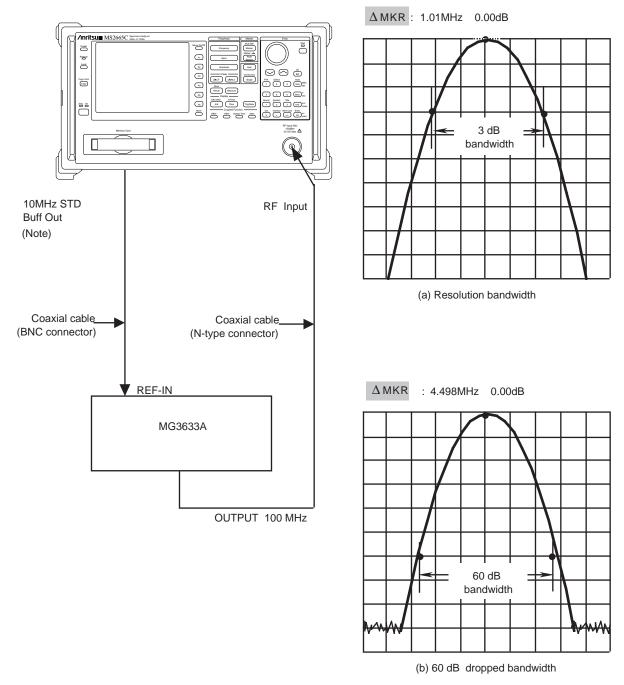
Selectivity =
$$\frac{60 \text{ dB bandwidth (Hz)}}{3 \text{ dB bandwidth (Hz)}}$$

To test the resolution bandwidth and selectivity, first measure the resolution bandwidth (3dB bandwidth), then the 60 dB bandwidth and calculate the 60 dB/3 dB bandwidth ratio.

(1) Specifications

• Resolution bandwidth accuracy:

$$\pm 20$$
 % (RBW=1 kHz to 1 MHz)


• Selectivity (60 dB/3 dB bandwidth):

$$\leq$$
 15:1 (RBW=1 kHz to 3 MHz)

(2) Test instrument

• Synthesized signal generator:

(3) Setup

Resolution Bandwidth/Selectivity Test

(4) Procedure

(a) Resolution bandwidth accuracy

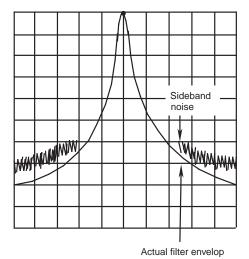
Step		Procedure
1	Press the [Preset] key.	
2	Perform all calibration.	
3	Set the spectrum analyzer as shown below:	
	Center Freq 100 MHz Span 5 MHz RBW (MANUAL) 1 MHz Scale LOG 1 dB / div	Z Z
4	Press the $[\rightarrow RLV]$ key and match the peak of the on the screen.	e signal trace to the top line (REF LEVEL)
5	Press the [Single] key to execute a single sweep, then check that the single sweep has been completed.	
6	After pressing the Measure key, operate Occ BW Measure and Setup and display the setup menu of occupied frequency bandwidth measurement.	
7	Select X dB Down and set it to 3 dB.	
8	Press Return to return to the Occ BW Measure menu, and then press Execute.	
9	The 3 dB resolution bandwidth value is displayed in the upper left-hand corner of the screen. Fill in this value in the table on the next page.	
10	Repeat steps 3 to 9 for the frequencies other than the resolution bandwidth 1 MHz and the frequency span 5 MHz according to the combinations of resolution bandwidth and frequency span shown in the table on the next page.	3 dB sandwidth Bandwidth Measurement

Resolution Bandwidth (3 dB)

Resolution bandwidth	Frequency span	3 dB bandwidth
3 MHz	10 MHz	
1 MHz	5 MHz	
300 kHz	500 kHz	
100 kHz	200 kHz	
30 kHz	50 kHz	
10 kHz	20 kHz	
3 kHz	5 kHz	
1 kHz	2 kHz	

(b) Resolution bandwidth selectivity

Step	Procedure
1	Set the spectrum analyzer as shown below:
	Center Freq
	RBW (MANUAL)1 MHz
	ScaleLOG 10 dB/div
	VBW 100 Hz
	Marker NORMAL
	Zone Width
2	Press the $[\rightarrow RLV]$ key to match the peak of the signal
	trace to the top line (REF LEVEL) on the screen.
3	Press the [Single] key to execute a single sweep,
	then check that the single sweep has been com-
	pleted.
4	After pressing the Measure key, operate Occ BW
	Measure and Setup and display the setup menu of
	occupied frequency bandwidth measurement.
5	Select X dB Down and set it to 60 dB.
6	Press Return to return to the Occ BW Measure
	menu, and then press Execute. 60 dB bandwidth
7	The 60 dB resolution bandwidth value is displayed in the upper left-hand corner of the screen. Fill in this value in the table on the next page.
8	Repeat steps 1 to 7 for the frequencies other than the resolution bandwidth 1 MHz and the frequency span 20 MHz according to the combinations of resolution bandwidth and frequency span shown in the table on the next page.
9	For the 3 dB bandwidth, too, write the value of the Resolution Bandwidth (3 dB) table on the preceding page in the table on the next page.
10	For each resolution bandwidth in the table on the next page, confirm that the value calculated


from (60 dB BW/3 dB BW) is \leq 15.

Selectivity Test (60 dB/3 dB Bandwidth Ratio)

Resolution bandwidth	Frequency span	Video bandwidth	60 dB BW	3 dB BW	60 dB BW/30 dB BW
3 MHz	100 MHz	100 Hz			≤15
1 MHz	20 MHz	100 Hz			≤15
300 kHz	10 MHz	100 Hz			≤15
100 kHz	5 MHz	100 Hz			≤15
30 kHz	1 MHz	100 Hz			≤15
10 kHz	200 kHz	100 Hz			≤15
3 kHz	100 kHz	100 Hz			≤15
1 kHz	50 kHz	100 Hz			≤15

Sideband phase noise

When the resolution bandwidth is set to a fixed value and a signal that has far less sideband-noise level than the equipment to be tested is input, check the level of the noise as compared to the peak signal (dBc) at the specified frequency away from the peak.

Since the average value is measured for noise level, use a video filter for measurement.

This sideband noise is a spectrum response which is modulated by the internal noise of the spectrum analyzer. If this response is large, the actual filter envelope is masked by the noise as shown, which makes measurement impossible.

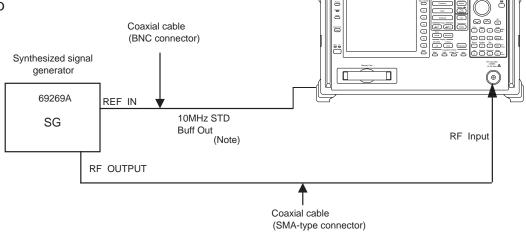
(1) Specifications

Sideband phase noise:

• MS2665C: \leq -95 dBc/Hz+20 Log N (1 MHz to 21.2 GHz, 10 kHz offset)

• MS2667C: \leq -95 dBc/Hz+20 Log N (1 MHz to 30.0 GHz, 10 kHz offset)

(N is harmonic order at mixer)


• MS2668C: \leq -95 dBc/Hz+20 Log N (1 MHz to 40.0 GHz, 10 kHz offset)

(N is LO harmonic order at mixer)

(2) Test instruments

• Signal generator: 69269A Synthesized Signal Generator

(4) Procedure

Step	P	rocedure
1	Press the [Preset] key.	
2	Operate All Cal.	
3	Set the 69269A output to 2 GHz and 0 dBm.	
4	Set the spectrum analyzer as shown below:	
	Center Freq 2.000 010 GHz Span 25 kHz Reference Level 0 dBm Attenuator 10 dB RBW 1 kHz VBW 10 Hz DET MODE SAMPLE	
5	Press the [Peak Search] key to search for a peak point so that the peak point on the signal trace is included in the zone marker.	
6	Press the $[\rightarrow RLV]$ key to match the peak of the signal trace to the top line (REF LEVEL) on the screen.	
7	After pressing the Measure key, select C/N Ratio Measure.	
8	Press the Meas On key to start C/N measurement.	
9	Set Zone Width of Marker to Spot.	CF : 2.000 010GHz Span : 25kHz
10	Press the [Marker] key, then turn the rotary knobto move the zone marker to the right so that the zone center frequency is 10.0 kHz.	Sideband Noise Measurement
11	Make sure that the C/N value is $-95 \text{ dBc} + 20 \log N$ or less.	
12	Repeat steps 3 through 11 for each frequency show	n in the table on the next page.

• MS2665C

Center frequency	Signal generator	Harmonic order at mixer	Results	Spec.
2.000 01 GHz	2 GHz	1		−95 dBc/Hz
6.000 01 GHz	6 GHz	1		−95 dBc/Hz
10.000 01 GHz	10 GHz	2		-89 dBc/Hz
20.000 01 GHz	20 GHz	3		-85.5 dBc/Hz

• MS2667C

Center frequency	Signal generator	Harmonic order at mixer	Results	Spec.
2.000 01 GHz	2 GHz	1		−95 dBc/Hz
6.000 01 GHz	6 GHz	1		−95 dBc/Hz
10.000 01 GHz	10 GHz	2		-89 dBc/Hz
20.000 01 GHz	20 GHz	3		-85.5 dBc/Hz
26.500 01 GHz	26.5 GHz	4		-83 dBc/Hz

• MS2668C

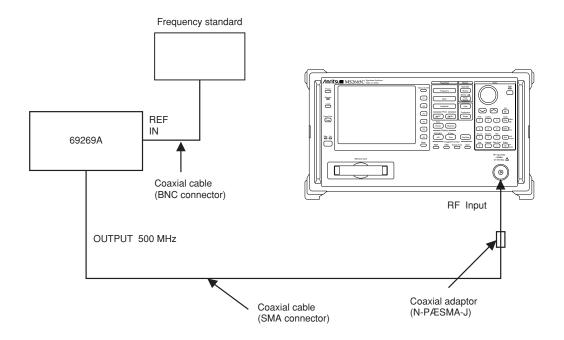
Center frequency	Signal generator	Harmonic order at mixer	Results	Spec.
2.000 01 GHz	2 GHz	1		–95 dBc/Hz
6.000 01 GHz	6 GHz	1		–95 dBc/Hz
10.000 01 GHz	10 GHz	2		-89 dBc/Hz
20.000 01 GHz	20 GHz	4		-85.5 dBc/Hz
26.000 01 GHz	26 GHz	4		-83 dBc/Hz
39.000 01 GHz	39 GHz	6		-80 dBc/Hz

Frequency measurement accuracy

Set the marker point to the position at least 20 dB higher than the noise (or adjacent interference signal) to operate the built-in counter with the higher-S/N signal, and test the frequency measurement accuracy using Count On mode.

(1) Specifications

• Accuracy: \leq (Readout frequency × reference oscillator accuracy \pm (1 count))


• Resolution: 1 Hz, 10 Hz, 100 Hz, 1 kHz

(2) Test instrument

• Signal generator: 69269A

Frequency standard

(3) Setup

Frequency Measurement Accuracy Test

(4) Procedure

Step	Pr	ocedure
1	Press the [Preset] key.	
2	Set the 69269A to 500 MHz and -10 dBm.	
3	Set the spectrum analyzer as shown below:	
	Center Freq	
4	Press the [Measure] key and set to Frequency Count Then, press the Return key and set to Count On.	e. Press Setup and set Resolution to 1 Hz.
5	Confirm that the FREQ reading at the upper-left of the screen is the RF INPUT frequency 500 MHz \pm 1 Hz or less.	
6	Change the counter resolution to 10 Hz and confirm that the Freq reading is 500 MHz \pm 10 Hz or less.	
7	• Change the counter resolution to 100 Hz and confirm that the Freq reading is 500 MHz ±100 Hz or less.	
	• Change the counter resolution to 1 kHz and confirm that the Freq reading is 500 MHz ± 1 kHz or less.	CF: 500MHz Span: 50kHz Frequency Measurement

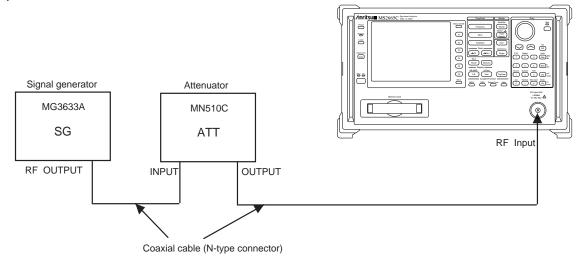
Amplitude display linearity

Test the error per vertical graduation for the LOG display. For the LOG display linearity, test that the graduation is equal to the logarithm (dB) of the input signal level.

Input the correct level signal to the RF Input via an external attenuator and calculate the error from the attenuation of the attenuator and the Δ marker reading at the trace waveform peak.

(1) Specifications

• Amplitude display linearity: After automatic calibration


LOG: ± 2.5 dB for 0 to -90 dB

±1.5 dB for 0 to -85 dB ±1 dB for 0 to -70 dB ±0.4 dB for 0 to -20 dB

(2) Test instruments

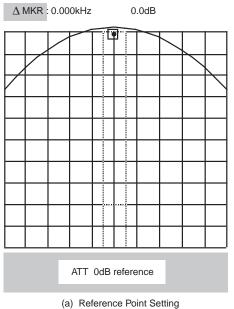
Signal generator: MG3633AAttenuator: MN510C

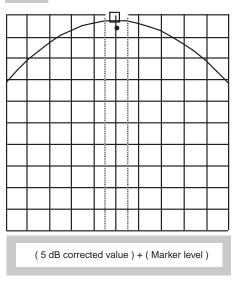
(3) Setup

Amplitude Display Linearity Test

(4) Procedure

LOG display linearity


Step	Procedure
1	Press the [Preset] key.
2	Operate All Cal.
3	Set the MG3633A to 100 MHz and 0 dBm.
4	Set the MN510C to 0 dB.
5	Set the spectrum analyzer as shown below:
	Center Freq100 MHz
	Span 10 kHz
	Reference Level 0 dBm
	Attenuator
	RBW 3 kHz
	VBW
6	Press the $[\rightarrow$ CF] key to set the spectrum waveform peak to the center of the screen.
7	Adjust the MG3633A output level so that the marker level reading is 0.0 dBm.
8	Press the [Marker] key sequentially to set the marker to Δ marker after the sweep is completed.


- 5.04dB

Procedure Step

9 As shown on Fig. (b), read the level of the current marker when ATT is set at 5dB. An error is determined as calibrated ATT 5 dB value+ Δ marker level.

10 Add a marker level corresponding to the calibrated ATT value when ATT is set as 10 to 90 DB (with 5 dB steps) and determine the error.

 Δ MKR : 0.000kHz

(b) Δ Marker Level when ATT is 5

Log Display Linearity (10 dB/div)

	А	В	
ATT setting (dB)	ATT Caliblation value	∆marker level (dB)	Error (dB)=A+B
0	0 (reference)	0 (reference)	0 (reference)
5			
10			
15			
20			
25			
30			
35			
40			
45			
50			
55			
60			
65			
70			
75			
80			
85			
90			

Frequency response

Generally, when one or more signals with a different frequency but the same amplitude are input, the spectrum analyzer displays the same amplitude for each spectrum on the screen.

Specifications

Relative flatness:

• MS2665C:

±1.5 dB (9 kHz to 3.2 GHz, band 0) ±1.0 dB (100 kHz to 3.2 GHz, band 0) ±1.5 dB (2.92 to 8.1 GHz, band 1-/1+)

±3.0 dB (8.0 to 15.2 GHz, band 2+) ±4.0 dB (15.1 to 21.2 GHz, band 3+)

• MS2667C: ±1.5 dB (9 kHz to 3.2 GHz, band 0)

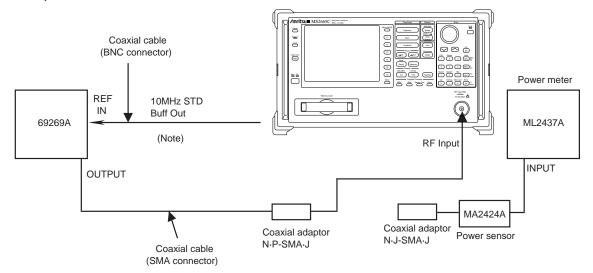
> ±1.0 dB (100 kHz to 3.2 GHz, band 0) ±1.5 dB (2.92 to 8.1 GHz, band 1-/1+) ±3.0 dB (8.0 to 15.2 GHz, band 2+) ±4.0 dB (15.1 to 21.2 GHz, band 3+) ±4.0 dB (22.3 to 30 GHz, band 4+)

• MS2668C: ±1.5 dB (9 kHz to 3.2 GHz, band 0)

> ±1.0 dB (100 kHz to 3.2 GHz, band 0) ±1.5 dB (3.1 to 8.1 GHz,band 1-/1+ (n=1)) ±3.0 dB (7.9 to 14.3 GHz,band 1+ (n=2)) ±4.0 dB (14.1 to 26.5 GHz,band 2– (n=4)) ±4.0 dB (26.2 to 40 GHz,band 3- (n=6))

Absolute flatness:

• MS2665C: \pm 5.0 dB (9 kHz to 21.2 GHz) • MS2667C: \pm 5.0 dB (9 kHz to 30.0 GHz) \pm 5.0 dB (9 kHz to 40 GHz) • MS2668C:


(2) Test instruments

69269A Signal generator: Power meter: ML2437A Power sensor: MA2424A

^{*} RF ATT=10 dB, at band 1, 2, 3, 4, after tuning the pre-selector, referenced to the midpoint between highest and lowest frequency deviation in each band.

^{*} Referenced to 100 MHz, RF ATT=10 dB, at band 1,2,3,4, after tuning the pre-selector.

(3) Setup

Frequency Response Test

(Note) In case of MS2665C, if there is no buffer output for the reference oscillator (Option 01) on the rear panel, input a reference signal from an external 10 MHz frequency standard to the main body and signal generator.

(4) Precautions

This test should be performed after allowing the instrument to warm up for 60 minutes or more.

(5) Procedure

(a) Calibration of signal-generator 69269A

Step	Procedure		
1	Set the 69269A as shown below:		
	OUTPUT FREQ100 MHz		
	OUTPUT LEVEL –10 dBm		
2	Connect the 69269A output to the power sensor input with a coaxial cable.		
3	Read the power meter display.		
4	Change the 69269A output frequency as shown in the tables on the next page and read the power meter display with level at 100 MHz as reference. This data is the calibration data.		

(b) Readout of measured amplitude deviation (frequency response)

Step	Procedure
1	Connect the 69269A OUTPUT to the spectrum analyzer RF Input with a coaxial cable.
2	Press the spectrum analyzer [Preset] key.
3	Perform all calibration.
4	Set the spectrum analyzer as shown below:
	Band0
	Center Freq100 MHz
	Span 200 kHz
	Reference Level
5	Press the $[\rightarrow CF]$ key.
6	Set the marker mode to delta marker.
7	Set the spectrum analyzer band and center frequency as shown in the tables on the next page, then obtain the deviation from the formula below by reading the delta marker level at each frequency.
	Deviation = Delta marker level reading - Measurement frequency calibration value For Band 1– , 1+, 2, 3, 4, the preselector is peaked. (See Chapter 8 of Vol.2, "Detailed Panel Operation."

• MS2665C

Band	Frequency	Calibration Value (dBm)	Marker level (dB)	Deviation (dB)
0	100 MHz	0	0 (reference)	0 (reference)
0	500 MHz			
0	1 GHz			
0	1.5 GHz			
0	2 GHz			
0	3 GHz			
1-	3.1 GHz			
1-	4 GHz			
1–	5 GHz			
1–	6 GHz			
1–	6.5 GHz			
1+	6.5 GHz			
1+	7 GHz			
1+	7.5 GHz			
1+	8 GHz			
2+	8 GHz			
2+	9 GHz			
2+	10 GHz			
2+	11 GHz			
2+	12 GHz			
2+	13 GHz			
2+	14 GHz			
2+	15 GHz			
3+	15.2 GHz			
3+	16 GHz			
3+	17 GHz			
3+	18 GHz			
3+	19 GHz			
3+	20 GHz			
3+	21 GHz			

• MS2667C

Band	Frequency	Calibration Value (dBm)	Marker level (dB)	Deviation (dB)
0	100 MHz	0	0 (reference)	0 (reference)
0	500 MHz			
0	1 GHz			
0	1.5 GHz			
0	2 GHz			
0	3 GHz			
1-	3.1 GHz			
1-	4 GHz			
1-	5 GHz			
1-	6 GHz			
1-	6.5 GHz			
1+	6.5 GHz			
1+	7 GHz			
1+	7.5 GHz			
1+	8 GHz			
2+	8 GHz			
2+	9 GHz			
2+	10 GHz			
2+	11 GHz			
2+	12 GHz			
2+	13 GHz			
2+	14 GHz			
2+	15 GHz			
3+	15.2 GHz			
3+	16 GHz			
3+	17 GHz			
3+	18 GHz			
3+	19 GHz			
3+	20 GHz			
3+	21 GHz			
3+	22 GHz			
4+	23 GHz			
4+	24 GHz			
4+	25 GHz			
4+	26 GHz			
4+	27 GHz			
4+	28 GHz			
4+	29 GHz			
4+	30 GHz			

• MS2668C

Band	Frequency	Calibration Value (dBm)	Marker level (dB)	Deviation (dB)
	100 MHz	0	0 (reference)	0 (reference)
	500 MHz		, , ,	, , ,
	1 GHz			
0	1.5 GHz			
	2 GHz			
	3 GHz			
	3.1 GHz			
	4 GHz			
1–	5 GHz			
	5.7 GHz			
	5.5 GHz			
1+	6.5 GHz			
n=1	7.5 GHz			
	8 GHz			
	8 GHz			
	9 GHz			
	10 GHz			
1+	11 GHz			
n=2	12 GHz			
	13 GHz			
	14 GHz			
	15 GHz			
	17 GHz			
	19 GHz			
2–	21 GHz			
n=4	23 GHz			
	25 GHz			
	26 GHz			
	27 GHz			
	29 GHz			
	31 GHz			
3–	33 GHz			
n=6	35 GHz			
	37 GHz			
	39 GHz			
	40 GHz			

Reference level accuracy

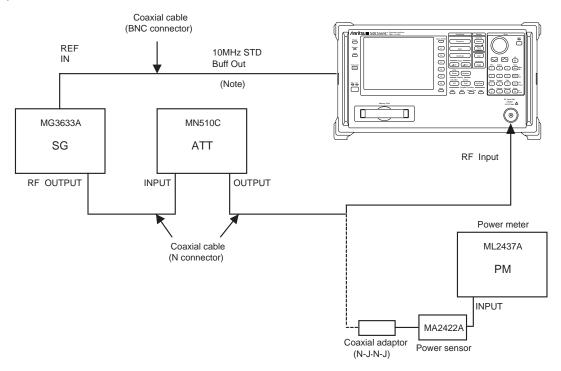
Here the absolute amplitude level at only 100 MHz is tested. Confirm the level accuracy after inputting an SG output (calibrated by a standard power meter) to the MS2665C/67C/68C.

(1) Specifications

• Reference level accuracy: At 100 MHz frequency and 1 MHz span after automatic calibration

(Resolution bandwidth, video bandwidth, RF ATT and sweep time set to AUTO)

 $\leq \pm 0.4 \text{ dB } (0 \text{ to } -49.9 \text{ dBm})$


 $\leq \pm 0.75 \text{ dB} \ (-69.9 \text{ to } -50 \text{ dBm}, 0.1 \text{ to } +30 \text{ dBm})$

 $\leq \pm 1.5 \text{ dB } (-80 \text{ to } -70 \text{ dBm})$

(2) Test instruments

Signal generator: MG3633A
Attenuator: MN510C
Power sensor: MA2422A
Power meter: ML2437A

(3) Setup

Reference Level Accuracy Test

(Note) In case of MS2665C, if there is no buffer output for the reference oscillator (Option 01) on the rear panel, input a reference signal from an external 10 MHz frequency standard to the main body and signal generator.

(4) Precautions

- 1) Set the resolution bandwidth, video bandwidth, ATT and sweep time to Auto.
- 2) This test should be performed after warming up this instrument for 60 minutes or more.

(5) Procedure

Step	Procedure		
1	Press the spectrum analyzer [Preset] key.		
2	Operate All Cal.		
3	Connect the attenuator OUTPUT to the power sensor input.		
4	Set the SG frequency to 100 MHz and adjust the SG level so that the power meter indication is 0 dBm. At this time, set the attenuator to 0 dB.		
5	Connect the attenuator OUTPUT to the spectrum analyzer RF Input connector.		
6	Set the spectrum analyzer as shown below:		
	Center Freq100 MHz		
	Span		
	Reference Level 0 dBm		
7	Press the $[\rightarrow CF]$ to move the peak point of the spectrum waveform to the center of the		
	screen.		
8	Read the marker level.		

Step Procedure

9 Change the attenuator in 10 dB steps, set the reference level as shown in the table below and read the marker level each time.

Reference level setting	Marker readout	Correction factor of ATT	Error
0 dBm	dBm	dB	dB
−10 dBm	dBm	dB	dB
-20 dBm	dBm	dB	dB
-30 dBm	dBm	dB	dB
-40 dBm	dBm	dB	dB
-50 dBm	dBm	dB	dB
−60 dBm	dBm	dB	dB
-70 dBm	dBm	dB	dB
-80 dBm	dBm	dB	dB

10 Calculate the error from the following equation.

Error = Marker readout - reference level set value - correction factor of ATT

Average noise level

The internal noise distributed evenly in proportion to the resolution bandwidth over the whole measurement frequency band is called the average noise level.

(1) Specifications

Average noise level: At 1 kHz resolution bandwidth, 1 Hz video bandwidth, and 0 dB RF ATT

• MS2665C: ≤–115 dBm (1 MHz to 1 GHz, band 0)

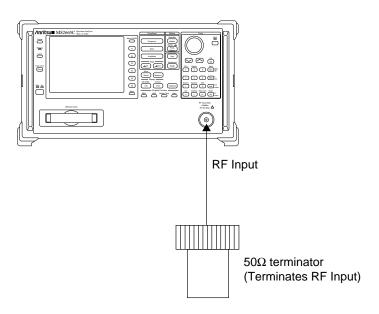
 \leq -115 dBm+1.5f [GHz] dB (1 to 3.1 GHz, band 0)

≤-110 dBm (2.92 to 8.1 GHz, band 1) ≤-102 dBm (8.0 to 15.3 GHz, band 2) ≤-98 dBm (15.2 to 21.2 GHz, band 3)

• MS2667C: ≤-115 dBm (1 MHz to 1 GHz, band 0)

 \leq -115 dBm+1.5f [GHz] dB (1 to 3.1 GHz, band 0)

≤-110 dBm (3.1 to 8.1 GHz, band 1) ≤-102 dBm (8.0 to 15.3 GHz, band 2) ≤-98 dBm (15.2 to 22.4 GHz, band 3) ≤-91 dBm (22.3 to 30 GHz, band 3)


• MS2668C: ≤-115 dBm (1 MHz to 1 GHz, band 0)

≤-115 dBm + 1.5f[GHz] dB (1 to 3.1 GHz, band 0) ≤-114 dBm (3.1 to 8.1 GHz, band 1-/1+ (n=1)) ≤-113 dBm (7.9 to 14.3 GHz, band 1+ (n=2)) ≤-105 dBm (14.1 to 26.5 GHz, band 2- (n=4)) ≤-101 dBm (26.2 to 40 GHz, band 3- (n=6))

Test instruments

• 50Ω terminator: 28S50

(3) Setup

(4) Procedure

Step	Procedure				
1	Press the spectrum analyzer [Preset] key.				
2	Operate All Cal.				
3	Terminate the RF Input with a 50 Ω terminator.				
J					
4	Set the spectrum analyzer as shown below:				
	Band 0				
	Start Freq 1 MHz				
	Stop Freq10 MHz				
	Reference Level—40 dBm				
	Attenuator				
	RBW 30 kHz				
	VBW 3 kHz				
	Detection Sample				
5	Press the [Single] key to execute a single sweep.				
6	Press the $[\rightarrow CF]$ key to set the frequency at the peak level of the spectrum to the center				
	frequency.				
7	Press the [Shift] key and then the [Single] key to execute a continuous sweep.				
8	Set the spectrum analyzer as shown below: (Time Domain)				
	Span 0 Hz				
	Reference Level100 dBm				
	RBW 1 kHz				
	VBW 1 Hz				
9	Press [Time], Storage, Average and Average Count keys in order and set the average count to 16.				
10	Press the Continue key to start the averaging, and wait until the 16-time averaging sweep is completed.				
11	Press the [Peak Search] key to execute peak search. At this point, read the level value at the marker.				
12	Confirm that the marker reading is less than the specification, shown in the table on the next page.				
13	Repeat steps 4 to 12 while setting Band/Start/Stop Freq from the table on next page so that the average noise level can be obtained.				

• MS2665C

MS2665C setting			Average noise level	
START FREQ	STOP FREQ	Band	Marker readout (dBm)	Specification
1 MHz	10 MHz	0		−115 dBm
10 MHz	100 MHz	0		−115 dBm
100 MHz	1 GHz	0		−115 dBm
1 GHz	2 GHz	0		−113.5 to −112 dBm
2 GHz	3.1 GHz	0		-112 to -110.35 dBm
2.92 GHz	4 GHz	1-		−110 dBm
4 GHz	5 GHz	1-		-110 dBm
5 GHz	6 GHz	1-		-110 dBm
6 GHz	6.5 GHz	1-		-110 dBm
6.4 GHz	7 GHz	1+		−110 dBm
7 GHz	8.1 GHz	1+		-110 dBm
8 GHz	9 GHz	2+		−102 dBm
9 GHz	10 GHz	2+		-102 dBm
10 GHz	11 GHz	2+		-102 dBm
11 GHz	12 GHz	2+		-102 dBm
12 GHz	13 GHz	2+		-102 dBm
13 GHz	14 GHz	2+		-102 dBm
14 GHz	15.3 GHz	2+		-102 dBm
15.2 GHz	16 GHz	3+		–98 dBm
16 GHz	17 GHz	3+		-98 dBm
17 GHz	18 GHz	3+		-98 dBm
18 GHz	19 GHz	3+		−98 dBm
19 GHz	20 GHz	3+		-98 dBm
20 GHz	21.2 GHz	3+		-98 dBm

• MS2667C

MS2667C setting			Average noise level		
START FREQ	STOP FREQ	Band	Marker readout (dBm)	Specification	
1 MHz	10 MHz	0		−115 dBm	
10 MHz	100 MHz	0		−115 dBm	
100 MHz	1 GHz	0		−115 dBm	
1 GHz	2 GHz	0		−113.5 to −112 dBm	
2 GHz	3.1 GHz	0		-112 to -110.35 dBm	
3.1 GHz	4 GHz	1-		−110 dBm	
4 GHz	5 GHz	1-		−110 dBm	
5 GHz	6 GHz	1-		-110 dBm	
6 GHz	6.5 GHz	1-		−110 dBm	
6.4 GHz	7 GHz	1+		−110 dBm	
7 GHz	8.1 GHz	1+		-110 dBm	
8 GHz	9 GHz	2+		-102 dBm	
9 GHz	10 GHz	2+		-102 dBm	
10 GHz	11 GHz	2+		-102 dBm	
11 GHz	12 GHz	2+		-102 dBm	
12 GHz	13 GHz	2+		-102 dBm	
13 GHz	14 GHz	2+		-102 dBm	
14 GHz	15.3 GHz	2+		-102 dBm	
15.2 GHz	16 GHz	3+		–98 dBm	
16 GHz	17 GHz	3+		-98 dBm	
17 GHz	18 GHz	3+		–98 dBm	
18 GHz	19 GHz	3+		–98 dBm	
19 GHz	20 GHz	3+		-98 dBm	
20 GHz	21 GHz	3+		–98 dBm	
21 GHz	22.4 GHz	3+		-98 dBm	
22.3 GHz	23 GHz	4+		–91 dBm	
23 GHz	24 GHz	4+		–91 dBm	
24 GHz	25 GHz	4+		–91 dBm	
25 GHz	26 GHz	4+		–91 dBm	
26 GHz	27 GHz	4+		–91 dBm	
27 GHz	28 GHz	4+		–91 dBm	
28 GHz	29 GHz	4+		–91 dBm	
29 GHz	30 GHz	4+		–91 dBm	

• MS2668C

MS2668C setting			Average noise level		
			Marker readout		
START FREQ	STOP FREQ	Band	(dBm)	Specification	
1 MHz	10 MHz			−115 dBm	
10 MHz	100 MHz			−115 dBm	
100 MHz	1 GHz	0		−115 dBm	
1 GHz	2 GHz			−113.5 to −112 dBm	
2 GHz	3.1 GHz			-112 to -110.35 dBm	
3.1 GHz	4 GHz			−114 dBm	
4 GHz	5 GHz	1–		−114 dBm	
5 GHz	5.7 GHz			−114 dBm	
5.5 GHz	6.5 GHz	1+		−114 dBm	
6.5 GHz	7.5 GHz	(n=1)		−114 dBm	
7.5 GHz	8.1 GHz			−114 dBm	
7.9 GHz	9 GHz			–113 dBm	
9 GHz	10 GHz			-113 dBm	
10 GHz	11 GHz	1+		-113 dBm	
11 GHz	12 GHz	(n=2)		-113 dBm	
12 GHz	13 GHz			-113 dBm	
13 GHz	14.3 GHz			-113 dBm	
14.1 GHz	15 GHz			-105 dBm	
15 GHz	16 GHz			-105 dBm	
16 GHz	17 GHz			-105 dBm	
17 GHz	18 GHz			-105 dBm	
18 GHz	19 GHz			-105 dBm	
19 GHz	20 GHz	2-		-105 dBm	
20 GHz	21 GHz	(n=4)		-105 dBm	
21 GHz	22.4 GHz			-105 dBm	
22.3 GHz	23 GHz			-105 dBm	
23 GHz	24 GHz			-105 dBm	
24 GHz	25 GHz			-105 dBm	
25 GHz	26.5 GHz			-105 dBm	
26.2 GHz	27 GHz			-101 dBm	
27 GHz	28 GHz	1		-101 dBm	
28 GHz	29 GHz	1		-101 dBm	
29 GHz	30 GHz	1		-101 dBm	
30 GHz	31 GHz	1		-101 dBm	
31 GHz	32 GHz	3–		-101 dBm	
32 GHz	33 GHz	(n=6)		-101 dBm	
33 GHz	34 GHz	1		-101 dBm	
34 GHz	35 GHz	1		-101 dBm	
35 GHz	36 GHz			-101 dBm	
36 GHz	38 GHz	1		-101 dBm	
38 GHz	40 GHz	1		-101 dBm	

Second harmonic distortion

Even if a signal without harmonic distortion is input to a spectrum analyzer, the higher harmonics are generated by the analyzer input-mixer non-linearity and are displayed on the screen.

The second harmonic level is the highest harmonic displayed on the MS2665C/67C/68C spectrum analyzer. The main point of the test is to apply a signal (with a distortion that is lower than the spectrum analyzer internal harmonic distortion [at least 20 dB below]) to the spectrum analyzer and measure the level difference between the fundamental wave and the second harmonic. If a low-distortion signal source cannot be obtained, apply a low-distortion signal to the spectrum analyzer after passing the signal through a low-pass filter (LPF).

(1) Specifications

Second harmonic distortion:

MS2665C

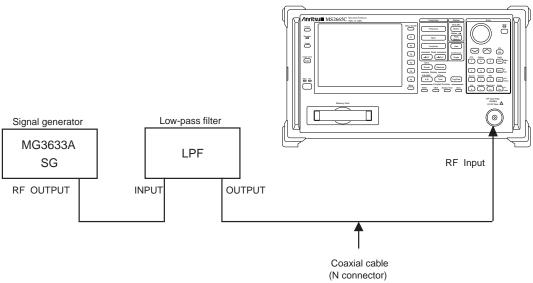
* Input level at mixer: -30 dBm ≤-60 dBc (10 to 200 MHz, Band 0) ≤-70 dBc (0.2 to 1.55 GHz, Band 0) * Input level at mixer: -10 dBm

• MS2667C

* Input level at mixer: -30 dBm ≤-60 dBc (10 to 200 MHz, Band 0) ≤-70 dBc (0.2 to 1.55 GHz, Band 0) * Input level at mixer: -10 dBm ≤-90 dBc or noise level (1.55 to 15 GHz, band 1, 2, 3, 4)

 \leq -100 dBc or noise level (1.46 to 10.6 GHz, band 1, 2, 3)

• MS2668C

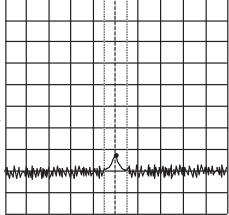

* Input level at mixer: -30dBm ≤-60 dBc (10 to 200 MHz, band 0) ≤-70 dBc (0.2 to 1.55 GHz, band 0) * Input level at mixer: -10 dBm ≤-90 dBc or noise level (1.55 to 20 GHz, band 1, 2, 3)

(2) Test instruments

• Signal generator: MG3633A 69269A

• LPF: With attenuation of 70 dB or more at twice the fundamental frequencies

(3) Setup


Second Harmonic Distortion Test

(4) Procedure

Step	Procedure				
1	Press the [Preset] key.				
2	Operate All Cal.				
3	Set the LPF cut-off frequency to approx. 12.8 MHz.				
4	Set the SG output frequency to 10 MHz and the output level to -30 dBm.				
5	Set the spectrum analyzer as shown below:				
	Center Freq10 MHz				
Span 10 kHz					
	Reference Level –30 dBm				
	Attenuator				

7 Move the marker to the peak of the spectrum waveform and make the marker the Δ marker. 8 Set the center frequency to twice the fundamental wave frequency to display the second harmonic on the screen. The Δ marker reading indicates the level difference between the fundamental wave and the second harmonic. If the level difference is 80 dB or more, set the REF LEVEL to -50 dBm. Confirm that the ATT set

Procedure

10 Set the SG as follows:

value is 0 dB.

9

Step

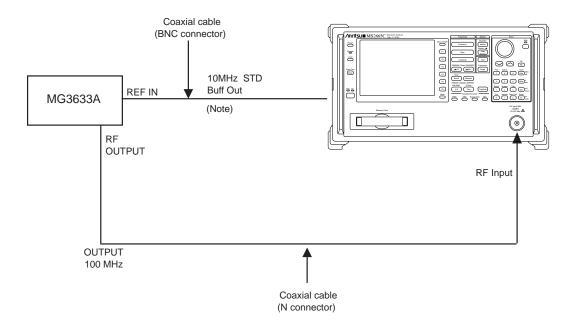
OUTPUT FREQ 1 GHz OUTPUT LEVEL -30 dBm

Set the LPF cut-off frequency to approx. 1.2 GHz.

11 Set the spectrum analyzer as follows:

> Center Freq 1 GHz Span 10 kHz Reference Level -30 dBm

12 Repeats steps 6 to 8.


Resolution bandwidth (RBW) switching uncertainty

When the resolution bandwidth (RBW) is switched, its level error at the peak point is measured.

(1) Specifications

Resolution bandwidth switching : ±0.3 dB (RBW=1 kHz to 1 MHz) uncertainty (referenced to RBW: 3 kHz)
 ±0.4 dB (RBW=3 MHz)

(2) Setup

Resolution Bandwidth Switching Error Test

(Note) In case of MS2665C, if there is no buffer output for the reference oscillator (Option 01) on the rear panel, input a reference signal from an external 10 MHz frequency standard to the main body and signal generator.

(4) Procedure

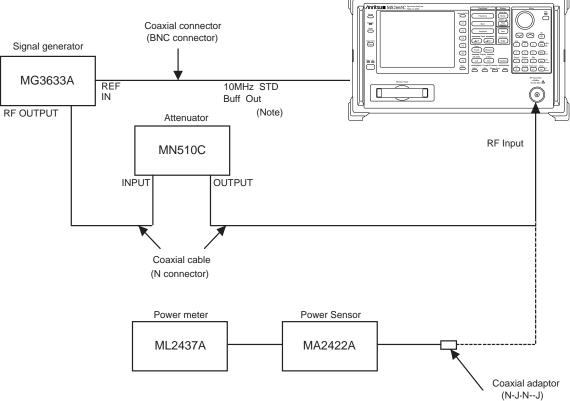
Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Operate All Cal.
3	Set the signal generator MG3633A as shown below.
	OUTPUT FREQ100 MHz
	OUTPUT LEVEL 0 dBm
4	Set the spectrum analyzer as shown below.
	Center Freq100 MHz
	Span 15 kHz
	Reference Level 0 dBm
	RBW 3 kHz
5	Press the $[\rightarrow CF]$ key to move the signal spectrum peak to the center.
6	Press [Marker] key in that order to set the marker to Δ marker.
7	Set RBW and SPAN as shown in the table on the next page and measure the level deviation (error) of each RBW by following steps 8 and 9 below.
8	Press [Peak Search] key to conduct peak search and move the current marker to the peak point of the signal spectrum.
9	Read the Δ marker level value.

Resolution bandwidth (RBW) switching uncertainty

MS2665C/2667C setting		A manufacture and a set	Charification
RBW	SPAN	∆ marker readout	Specification
1 kHz	5 kHz		±0.3 dB
3 kHz	15 kHz	0.0 dB	Reference
10 kHz	50 kHz		±0.3 dB
30 kHz	150 kHz		±0.3 dB
100 kHz	500 kHz		±0.3 dB
300 kHz	1.5 MHz		±0.3 dB
1 MHz	5 MHz		±0.3 dB
3 MHz	10 MHz		±0.4 dB

Input attenuator (RF ATT) switching uncertainty

At this point, measure the switching error when the amount of attenuation in the RF input section is switched. When the input attenuator is switched, IF-section step-amplifier gain is switched. To keep this step-amplifier gain constant, the reference level is switched according to the amount of input attenuator attenuation.


(1) Specifications

• Input attenuator switching error: $\pm 0.3 \text{ dB}$ (at 0 to 50 dB, frequency 100 MHz and input ATT 10 dB)

(2) Test instruments

Signal generator: MG3633A
 Attenuator: MN510C
 Power meter: ML2437A
 Power sensor: MA2422A

(3) Setup

Input Attenuator Switching Error Test

(Note) In case of MS2665C, if there is no buffer output for the reference oscillator (Option 01) on the rear panel, input a reference signal from an external 10 MHz frequency standard to the main body and signal generator.

(4) Procedure

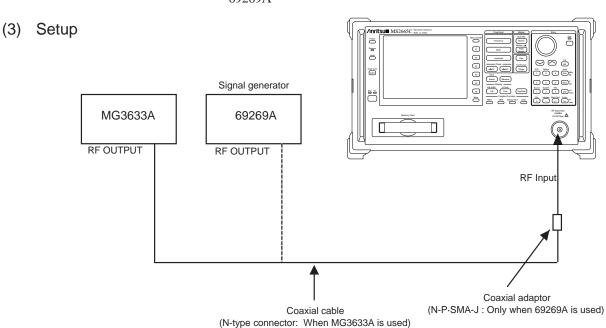
Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Operate All Cal.
3	Set the spectrum analyzer as shown below:
	Center Freq 100 MHz
	Span
4	Set the signal generator MG3633A as shown below:
	OUTPUT FREQ100 MHz
	OUTPUT LEVEL10 dBm
5	Set the amount of attenuation of the attenuator MN510C to 0 dB.
6	Connect the output of the attenuator MN510C to the power meter via coaxial cable.
7	Adjust the signal-generator output level so that the indicated value of the power meter is - 10.0 dBm.
8	Connect the coaxial cable of the attenuator output to the spectrum analyzer RF Input.
9	Press the $[\rightarrow CF]$ key.
10	Set the reference level to –10 dBm and attenuation to 50 dB.
11	Read the marker level.
12	Set Reference Level, ATT of this device and the external ATT as shown in the table on the next page, and read the level of each marker.
13	Find the error by the formula below:
	Error = marker readout-Reference Level-correction factor of attenuator
14	Find the deviation by the formula below:
	Deviation = Error-error when ATT at 10 dB
	Confirm that the deviation is within ± 0.3 dB.

Spectrum analy	yzer setting ATT	Attenuator setting	Correction factor of attenuator	ctor of Error		Deviation
-10 dBm	50 dB	0 dB	dB	dBm	dB	dB
-20 dBm	40 dB	10 dB	dB	dBm	dB	dB
-30 dBm	30 dB	20 dB	dB	dBm	dB	dB
-40 dBm	20 dB	30 dB	dB	dBm	dB	dB
-50 dBm	10 dB	40 dB	dB	dBm	dB	0 dB (reference)
-60 dBm	0 dB	50 dB	dB	dBm	dB	dB

Sweep time and time span accuracy

(1) Specifications

• Sweep time accuracy: $\pm 15 \%$ (20 ms to 100 s)


 ± 25 % (110 s to 1000 s)

• Time span accuracy: ±1 % (digital zero span mode)

(2) Test instruments

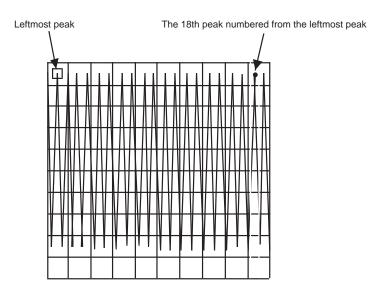
• Signal generator: MG3633A

69269A

(SMA connector: When 69269A is used)

Sweep Time and Time Span Accuracy

(4) Procedure


(a) Sweep Time

Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Operate All Cal.
3	Connect the MG3633A signal generator with the spectrum analyzer as shown in the setup diagram.
4	Set the spectrum analyzer as shown below:
5	CENTER FREQ 100 MHz SPAN 51 kHz SWP TIME 50 ms RBW 1 MHz VBW 1 MHz Set the MG3633A as shown below: OUTPUT FREQ 100 MHz OUTPUT LEVEL -16 dBm
	MODULATION AM (INT) 90 % MODULATION FREQ 400 Hz
6	Press the $[\rightarrow RLV]$ key.
7	Set the scale to Linear.
8	Press the [Single] key, then wait until a single sweep execution is completed.
9	Set the marker zone width to 5 Hz (Zone Width=5 Hz).
10	Move the marker to the left of the screen using the knob and set the zone marker on the left most peak of the sine wave.
11	Setting the marker mode to Δ (delta), move the current marker to the right using the knob. Then set the zone marker to the 18th peak from the left most sine wave peak on the screen.
12	Read the frequency difference of the Δ marker, which corresponds to 90 % of the Sweep Time. Obtain the SWP TIME by the following equation.

Step Procedure

Measure at each setting shown in the table below according to steps 8 to 12.

Spectrum analyzer setting SWP TIME	Signal Generator AM modulation frequency	SWT TIME calculated	90 % of specification min/max
50 ms	400 Hz		38.25 ms/51.75 ms
200 ms	100 Hz		153 ms/207 ms
2 s	10 Hz		1.53 s/2.07 s
20 s	1 Hz		15.3 s/20.7 s
200 s	0.1 Hz		99 s/261 s

(b) Time span

Step	Procedure
1	Press the spectrum analyzer [Preset] key.
2	Operate All Cal.
3	Connect the MG3633A signal generator with the spectrum analyzer shown in the setup diagram.
4	Set the spectrum analyzer as shown below:
	CENTER FREQ100 MHz
	SPAN
	SWEEP TIME 20 ms
	RBW 1 MHz
	VBW1 MHz
5	Set the MG3633A as shown below:
	OUTPUT FREQ100 MHz
	OUTPUT LEVEL16 dBm
	MODULATION AM (INT) 90 %
	MODULATION FREQ 1 kHz
6	Press the $[\rightarrow RLV]$ key.
7	Set the scale to Linear.
8	Press the [Single] key, then wait until a single sweep execution is completed.
9	Move the marker to the left of the screen using the knob and set the marker on the left most

11 Read the time difference of the Δ marker, which corresponds to 90 % of the Time Span.

Setting the marker mode to Δ (delta), move the current marker to the right using the knob. Then set the marker to the 18th peak from the left most sine wave peak on the screen.

Measure at each setting shown in the table below according to step 4 to 11.

peak of the sine wave.

10

Spectrum analyzer time span	Signal Generator AM modulation frequency	ΔMarker readout	90 % of specification min/max
20 ms	1 kHz		17.82 ms/18.18 ms
200 ms	100 Hz		178.2 ms/181.8 ms
2 s	10 Hz		1.782 s/1.818 s
20 s	1 Hz		17.82 s/18.18 s
200 s	0.1 Hz		178.2 s/181.1 s

Service

If the instrument is damaged or does not operate as specified, contact your nearest Anritsu dealer or business office for repair. When you request repair, provide the following information.

- (a) Model name and serial number on rear panel
- (b) Fault description
- (c) Name of a personnel-in-charge and address for contact when fault confirmed or at a completion of repair

SECTION 7

STORAGE AND TRANSPORTATION

This section describes the long-term storage, repacking and transportation of the MS2665C/67C/68C as well as the regular care procedures and the timing.

TABLE OF CONTENTS

Cleaning Cabinet	7-3
Storage Precautions	7-4
Precautions before storage	7-4
Recommended storage precautions	7-4
Repacking and Transportation	7-5
Repacking	7-5
Transportation	7-5

SECTION 7 STORAGE AND TRANSPORTATION

Cleaning Cabinet

Always turn the spectrum analyzer POWER switch OFF and disconnect the power plug from the AC power inlet before cleaning the cabinet. To clean the external cabinet:

- Use a soft, dry cloth for wiping off.
- Use a cloth moistened with diluted neutral cleaning liquid if the instrument is very dirty or before long-term storage.
 - After insuring that the cabinet has been thoroughly dried, use a soft, dry cloth for wiping off.
- If loose screws are found, tighten them with the appropriate tools.

CAUTION **A**

Never use benzene, thinner, or alcohol to clean the external cabinet; it may damage the coating, or cause deformation or discoloration.

Storage Precautions

This paragraph describes the precautions to take for long-term storage of the MS2665C/67C/68C Spectrum Analyzer.

Precautions before storage

- (1) Before storage, wipe dust, finger-marks, and other dirt off the spectrum analyzer.
- (2) Avoid storing the spectrum analyzer where:
 - 1) It may be exposed to direct sunlight or high dust levels.
 - 2) It may be exposed to high humidity.
 - 3) It may be exposed to active gases.
 - 4) It may be exposed to extreme temperatures (<−40°C or >70°C) or high humidity (≥90 %).

Recommended storage precautions

The recommended storage conditions are as follows:

- Temperature 0 to 30°C
- Humidity 40 % to 80 %
- Stable temperature and humidity over 24-hour period

Repacking and Transportation

The following precautions should be taken if the MS2665C/67C/68C Spectrum Analyzer must be returned to Anritsu Corporation for servicing.

Repacking

Use the original packing materials. If the spectrum analyzer is packed in other materials, observe the following packing procedure:

- (1) Wrap the spectrum analyzer in a plastic sheet or similar material.
- (2) Use a cardboard, wooden box, or aluminum case which allows shock-absorbent material to be inserted on all sides of the equipment.
- (3) Use enough shock-absorbent material to protect the spectrum analyzer from shock during transportation and to prevent it from moving in the container.
- (4) Secure the container with packing straps, adhesive tape or bands.

Transportation

Do not subject the spectrum analyzer to severe vibration during transport. It should be transported under the storage conditions recommended before.

APPENDIXES

TABLE OF CONTENTS

APPENDIX A FRONT AND REAR PANEL LAYOUT	A-1
APPENDIX B BLOCK DIAGRAM	B-1
APPENDIX C PERFORMANCE TEST RECORD	C-′

APPENDIX A FRONT AND REAR PANEL LAYOUT

This appendix shows the front and rear panel layout.

Fig. A-1	MS2665C Front Panel Layout	A-3
Fig. A-2	MS2665C Rear Panel Layout	A-5
Fig. A-3	MS2665C (with Opt. 14) Rear Panel Layout	A-7
Fig. A-4	MS2667C Front Panel Layout	A-9
Fig. A-5	MS2667C Rear Panel Layout	A-11
Fig. A-6	MS2668C Front Panel Layout	A-13
Fig. A-7	MS2668C Rear Panel Layout	A-15

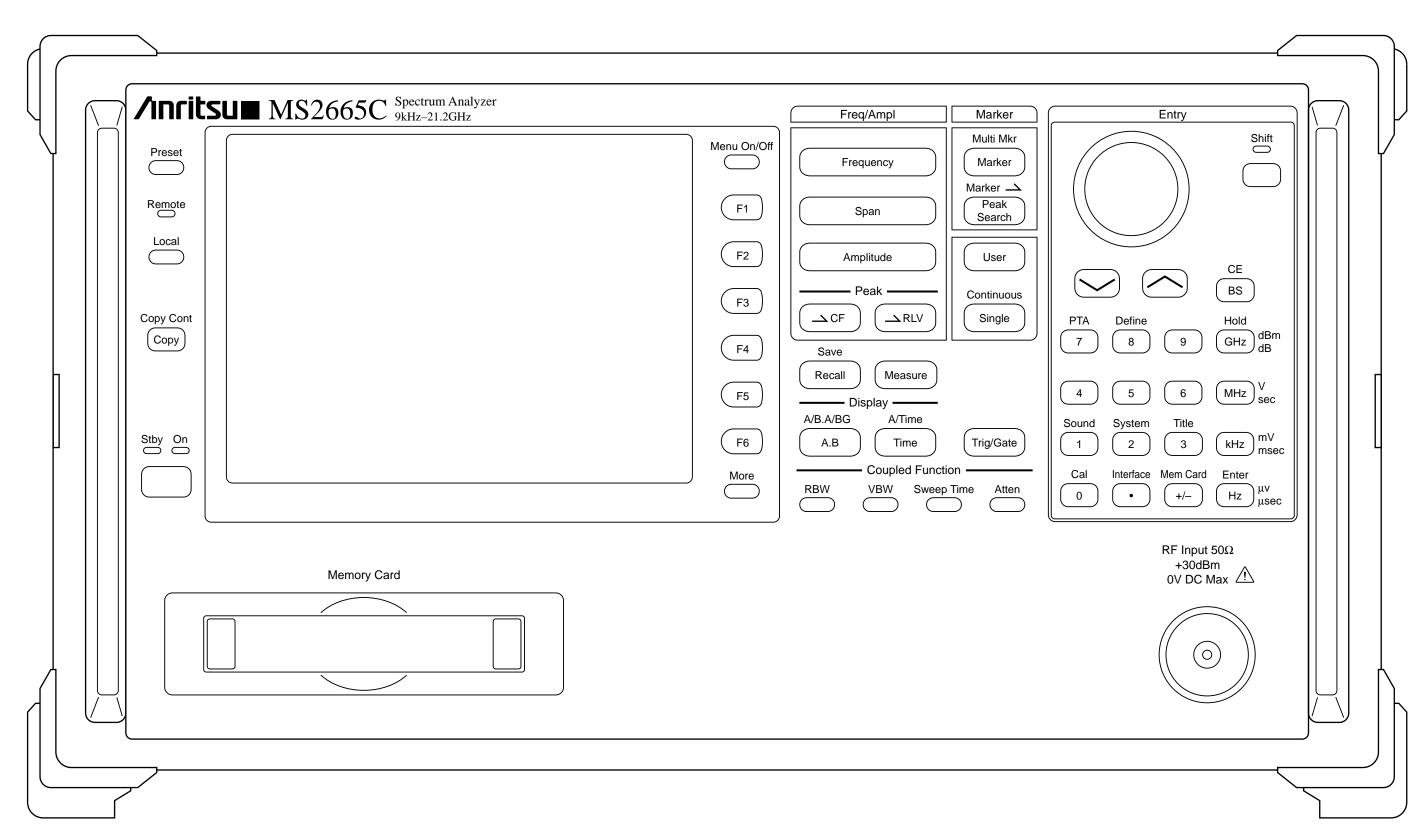
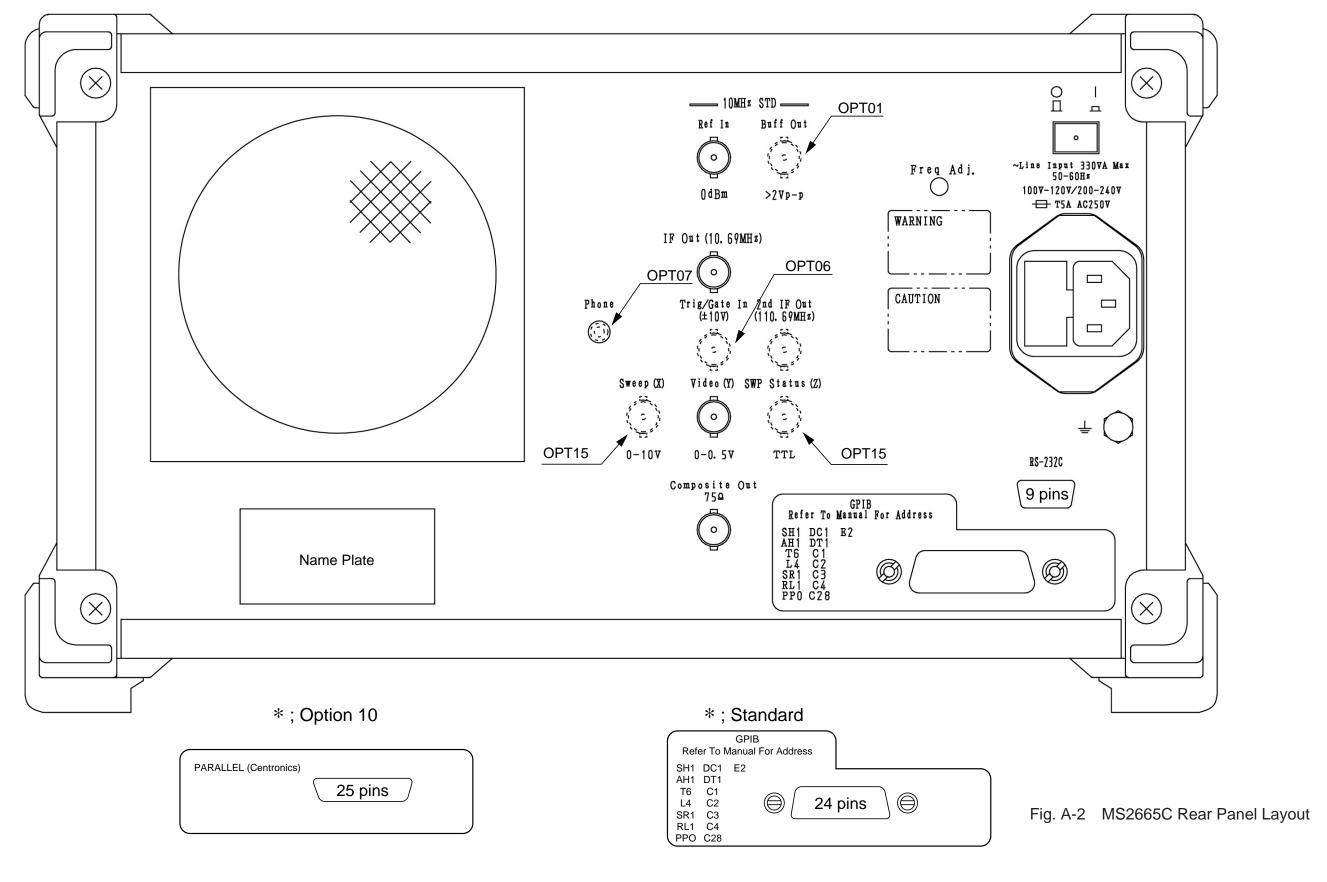



Fig. A-1 MS2665C Front Panel Layout

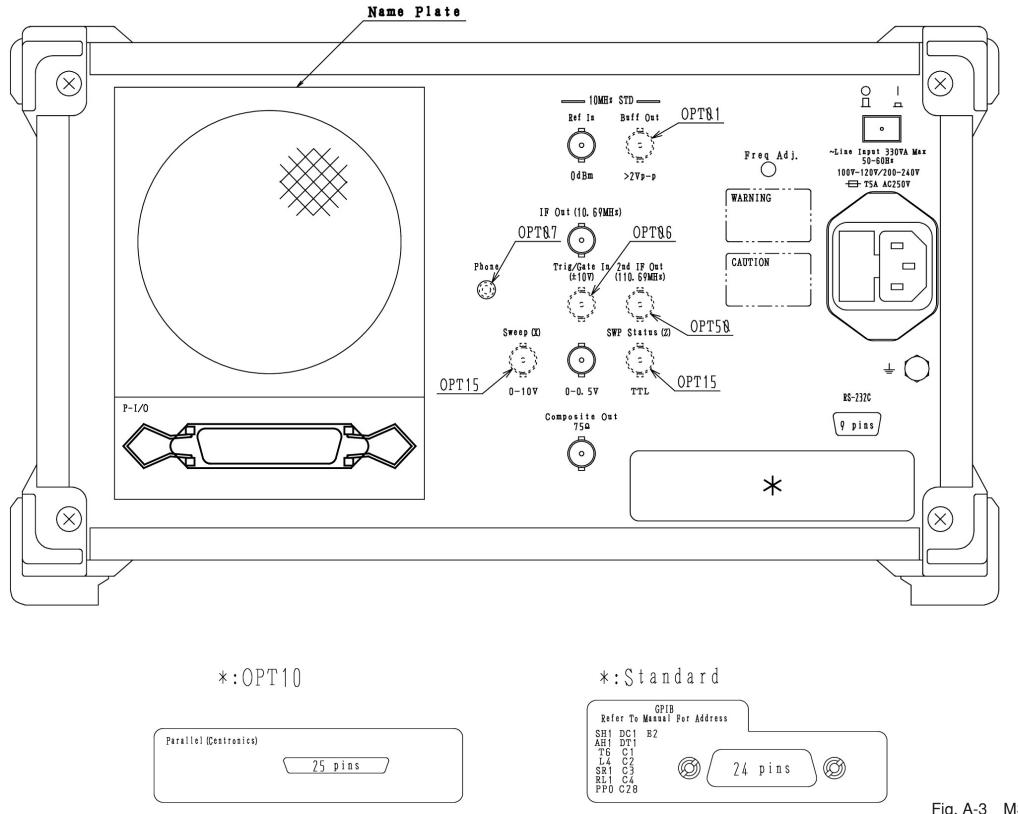


Fig. A-3 MS2665C (with Opt. 14) Rear Panel Layout

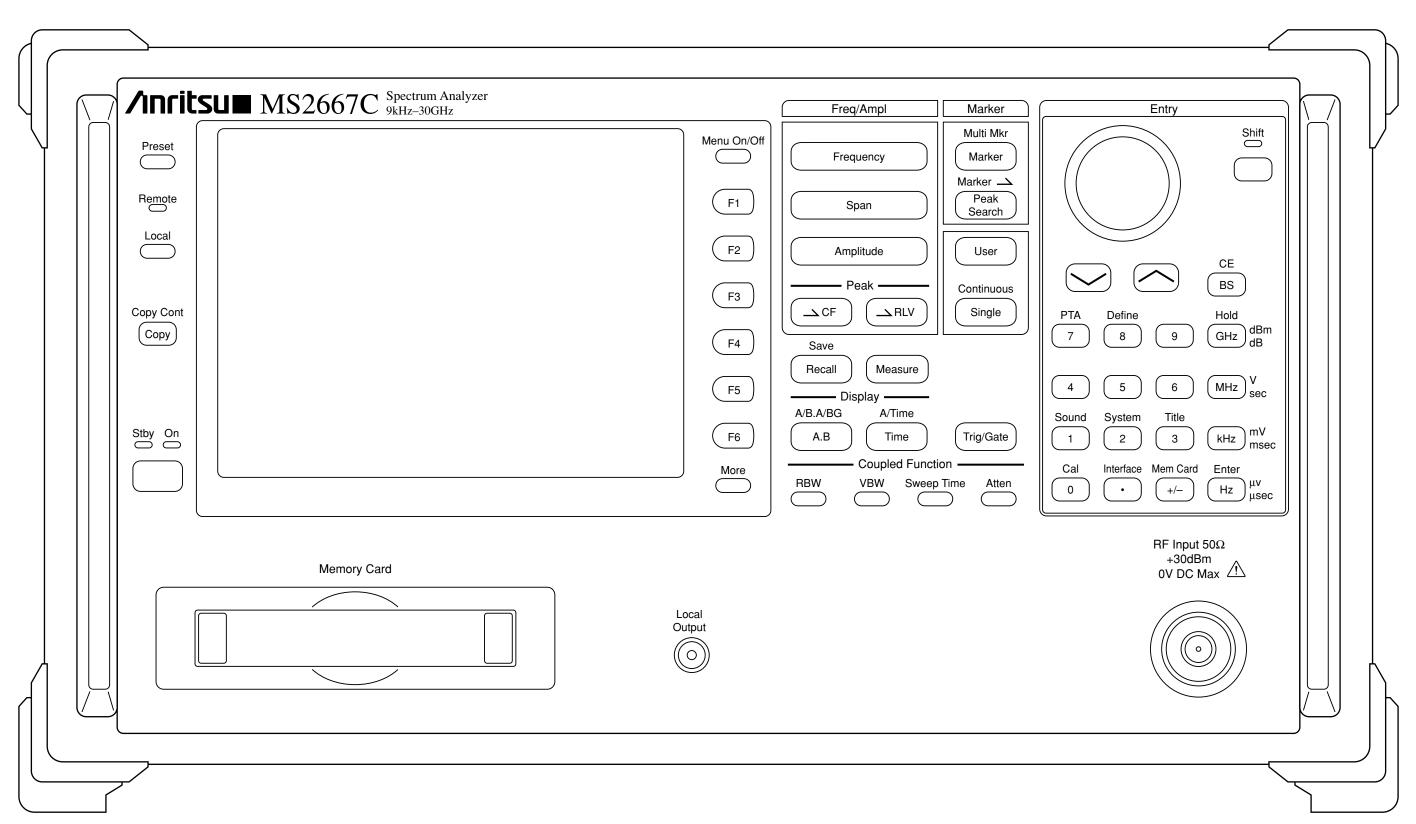
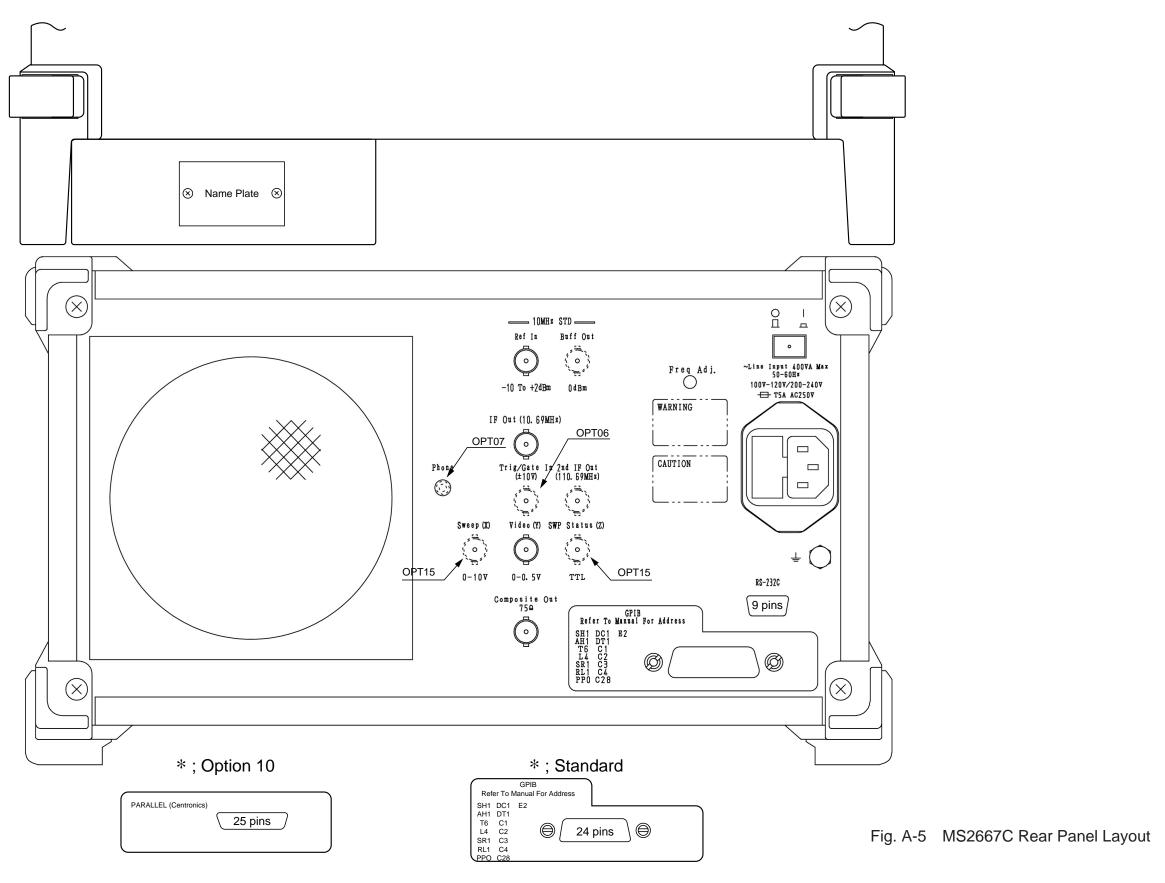



Fig. A-4 MS2667C Front Panel Layout

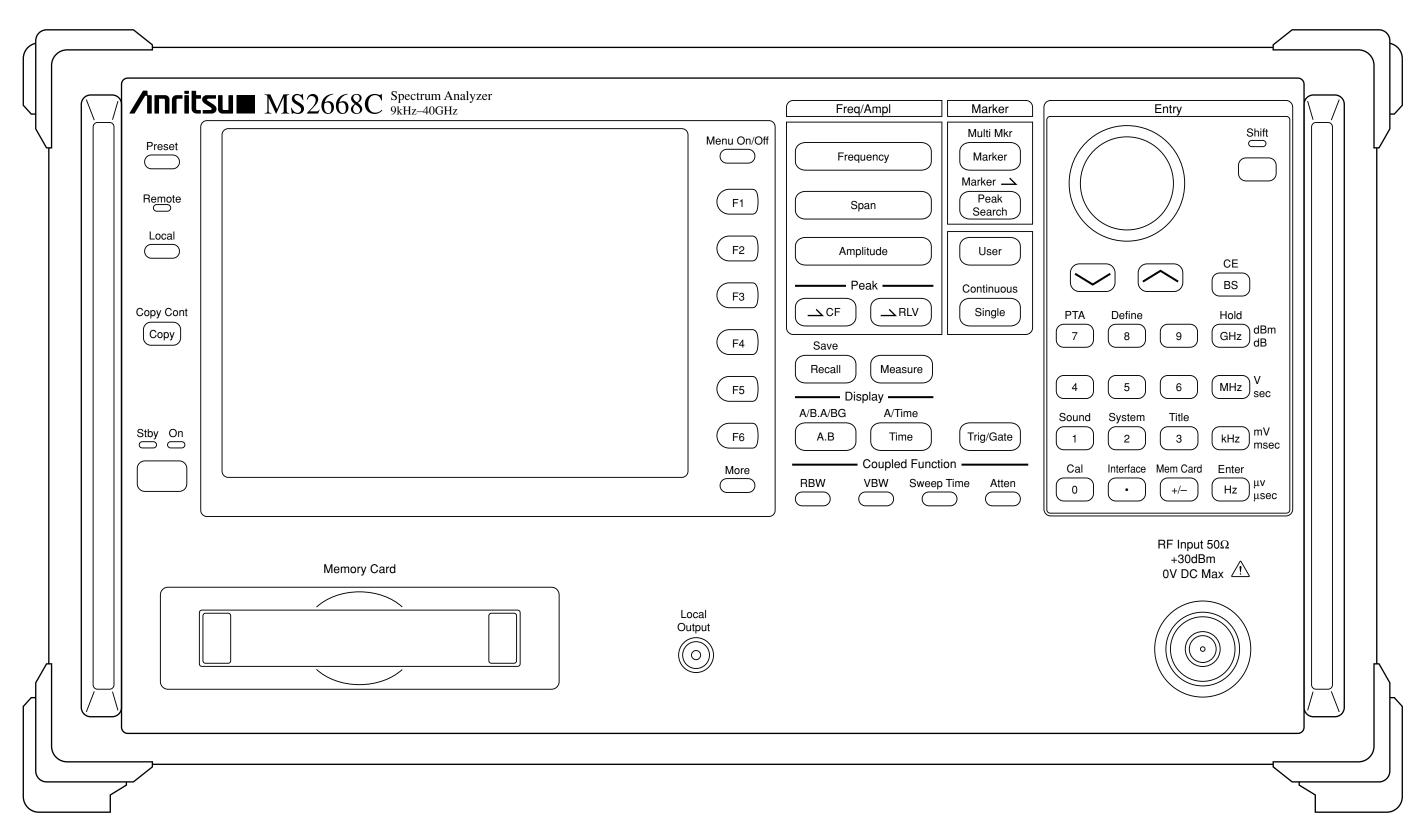
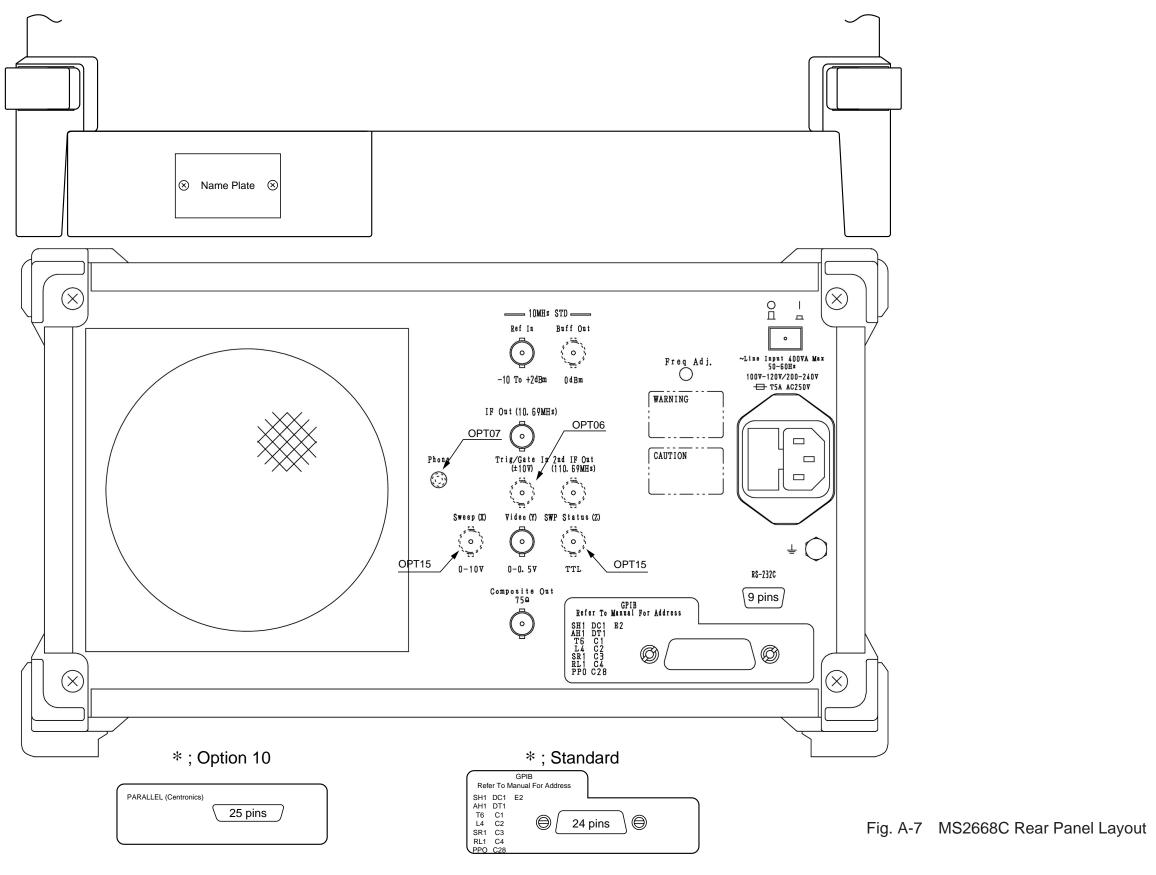



Fig. A-6 MS2668C Front Panel Layout

APPENDIX B BLOCK DIAGRAM

This appendix shows the Block Diagram of the MS2665C/67C/68C.

Fig. B-1	MS2665C Block Diagram (1/4)	B-3
Fig. B-2	MS2667C Block Diagram (2/4)	B-5
Fig. B-3	MS2665C Block Diagram (3/4)	B-7
Fig. B-4	MS2665C Block Diagram (4/4)	B-9
Fig. B-5	MS2667C Block Diagram (1/4)	B-11
Fig. B-6	MS2667C Block Diagram (2/4)	B-13
Fig. B-7	MS2667C Block Diagram (3/4)	B-15
Fig. B-8	MS2667C Block Diagram (4/4)	B-17
Fig. B-9	MS2668C Block Diagram (1/4)	B-19
Fig. B-10	MS2668C Block Diagram (2/4)	B-21
Fig. B-11	MS2668C Block Diagram (3/4)	B-23
Fig. B-12	MS2668C Block Diagram (4/4)	B-25

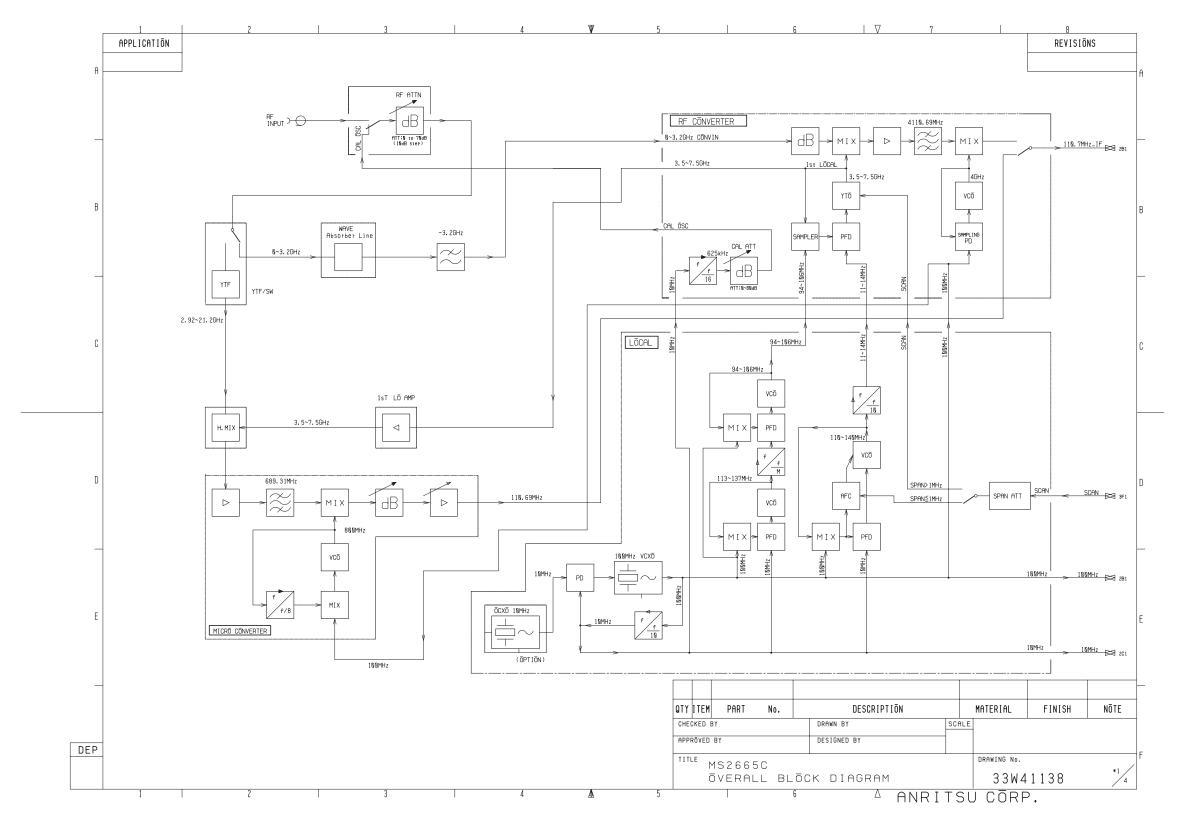


Fig. B-1 MS2665C Block Diagram (1/4)

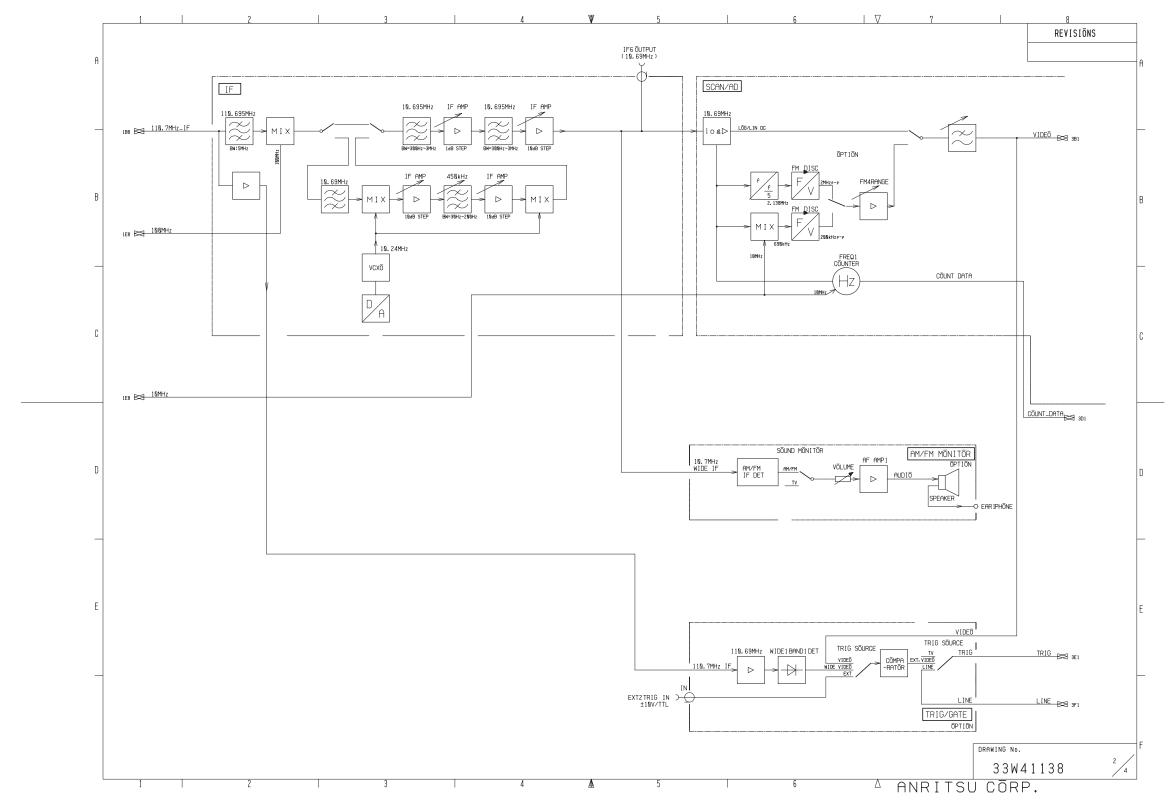


Fig. B-2 MS2665C Block Diagram (2/4)

Fig. B-3 MS2665C Block Diagram (3/4)

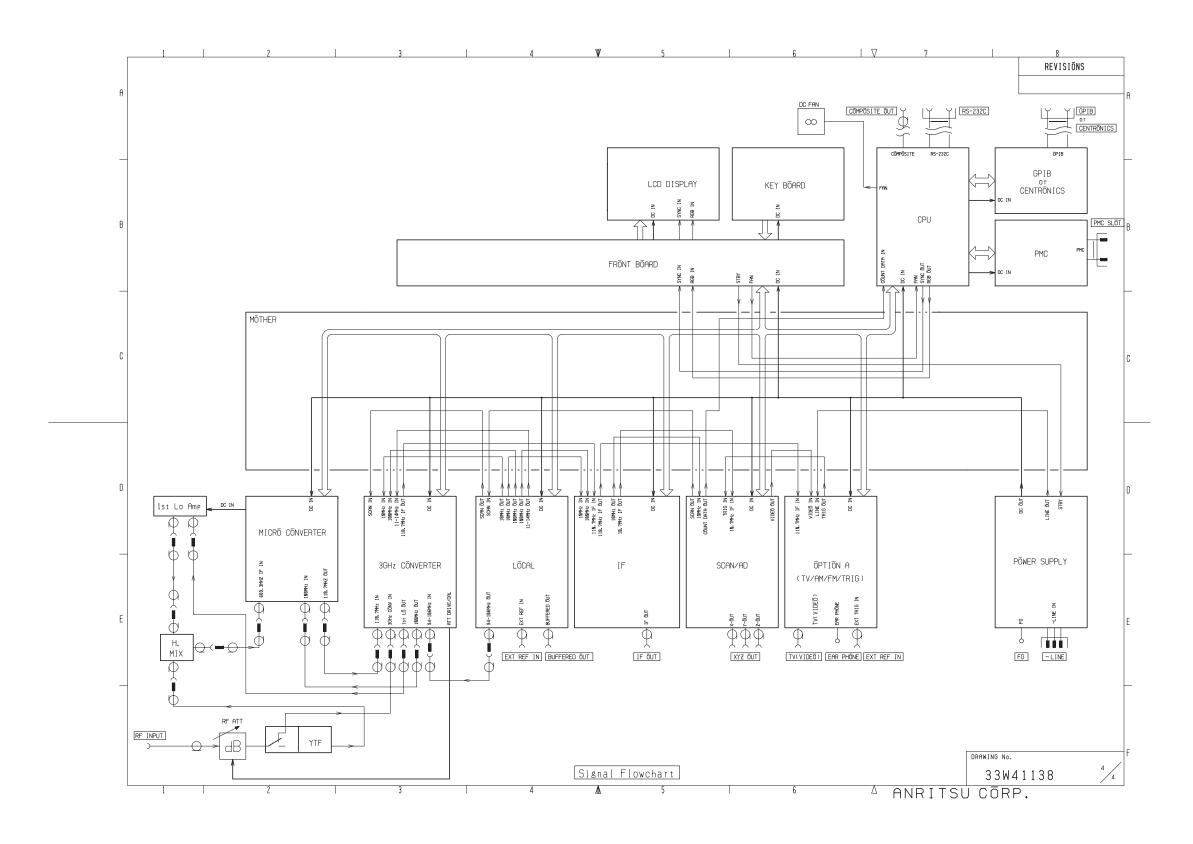


Fig. B-4 MS2665C Block Diagram (4/4)

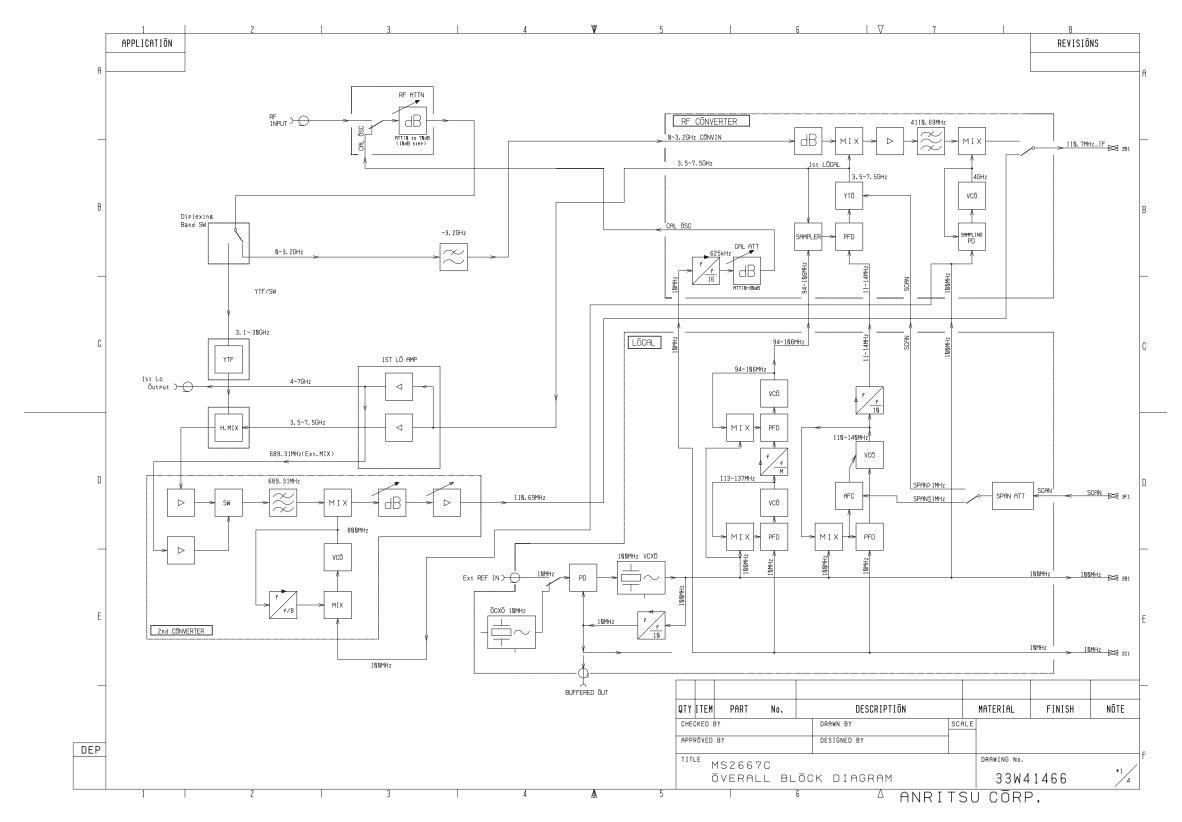


Fig. B-5 MS2667C Block Diagram (1/4)

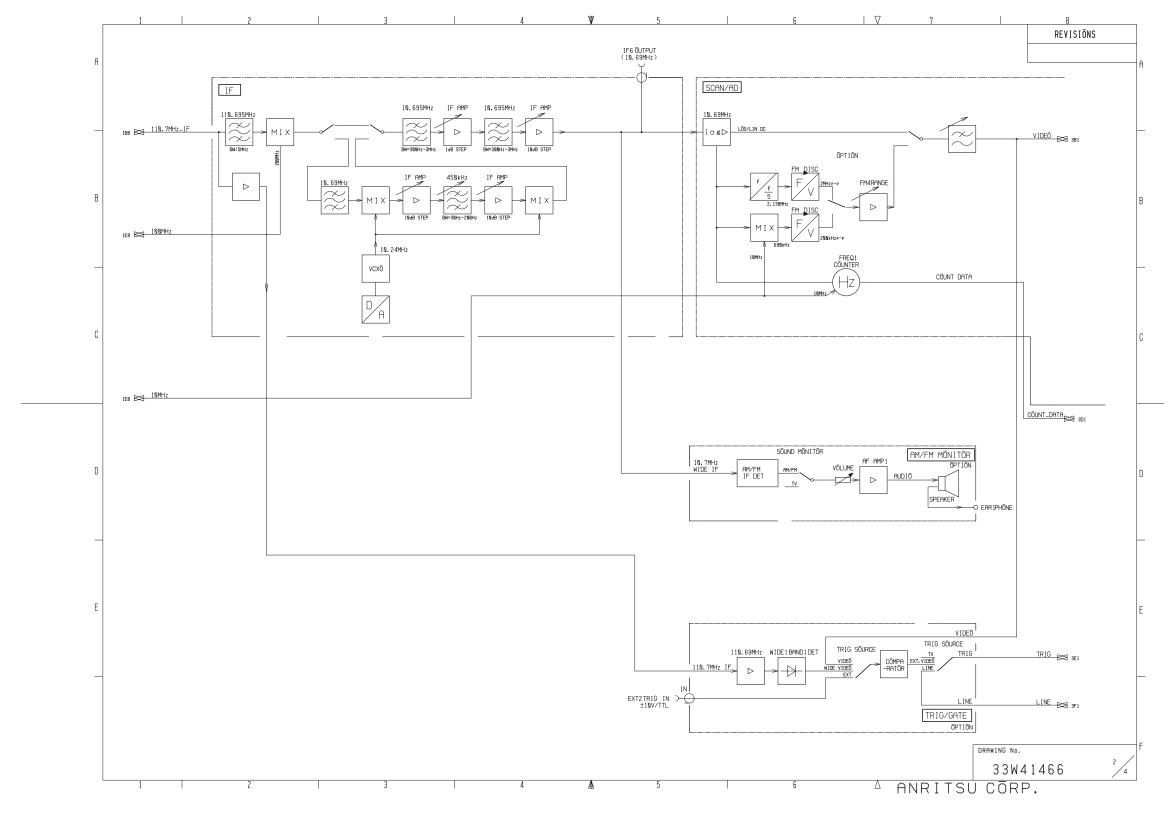


Fig. B-6 MS2667C Block Diagram (2/4)

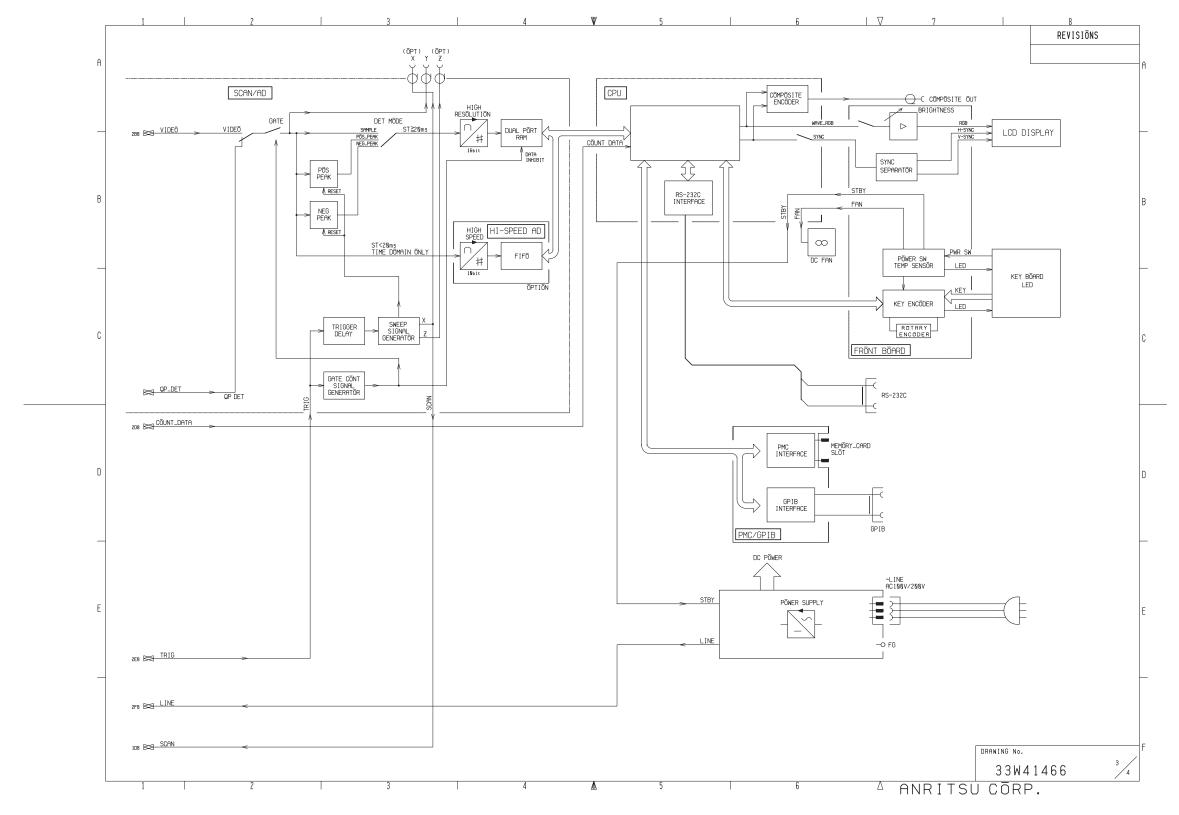


Fig. B-7 MS2667C Block Diagram (3/4)

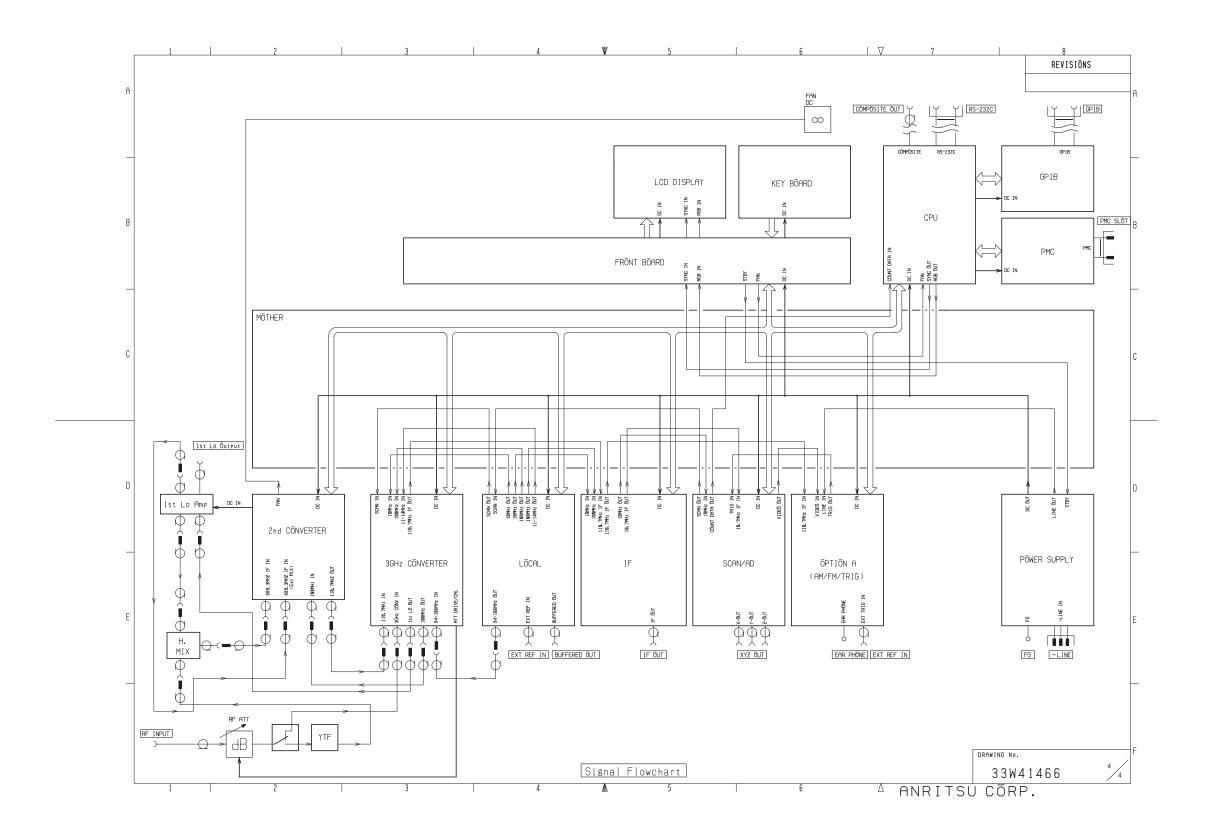


Fig. B-8 MS2667C Block Diagram (4/4)

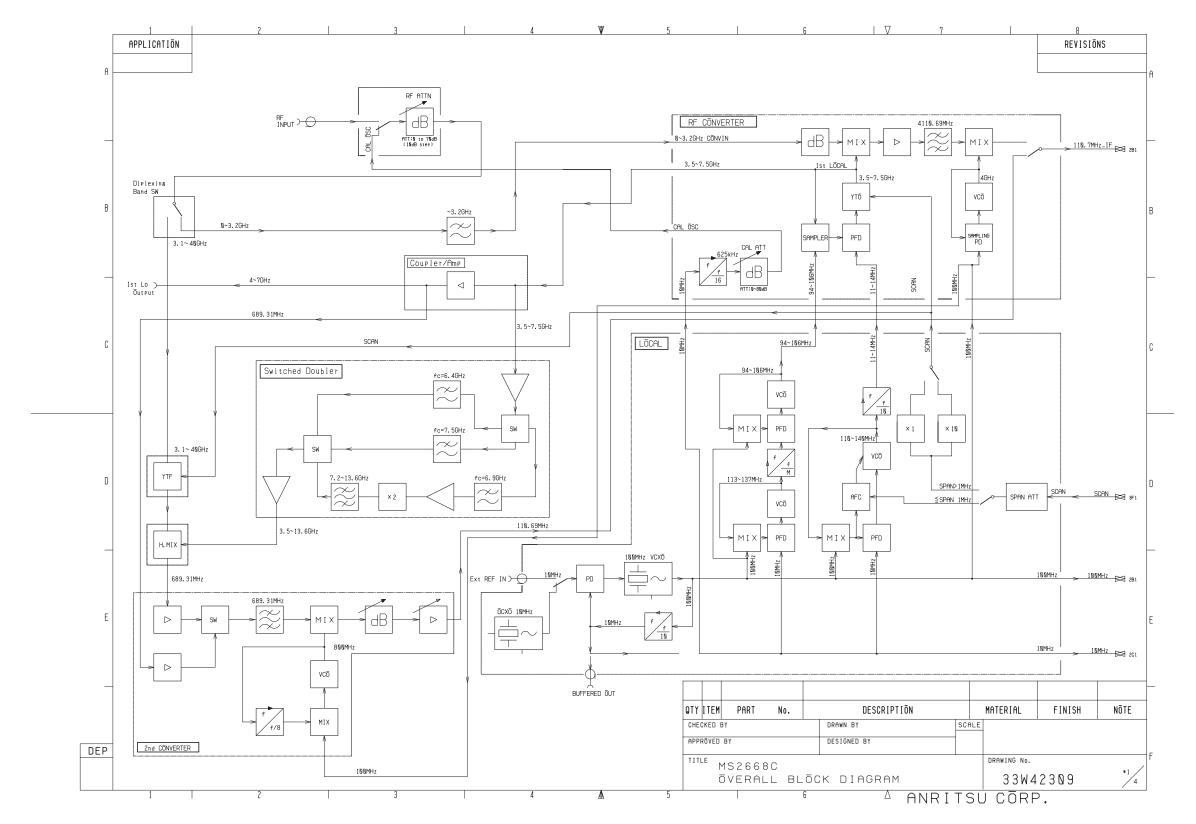


Fig. B-9 MS2668C Block Diagram (1/4)

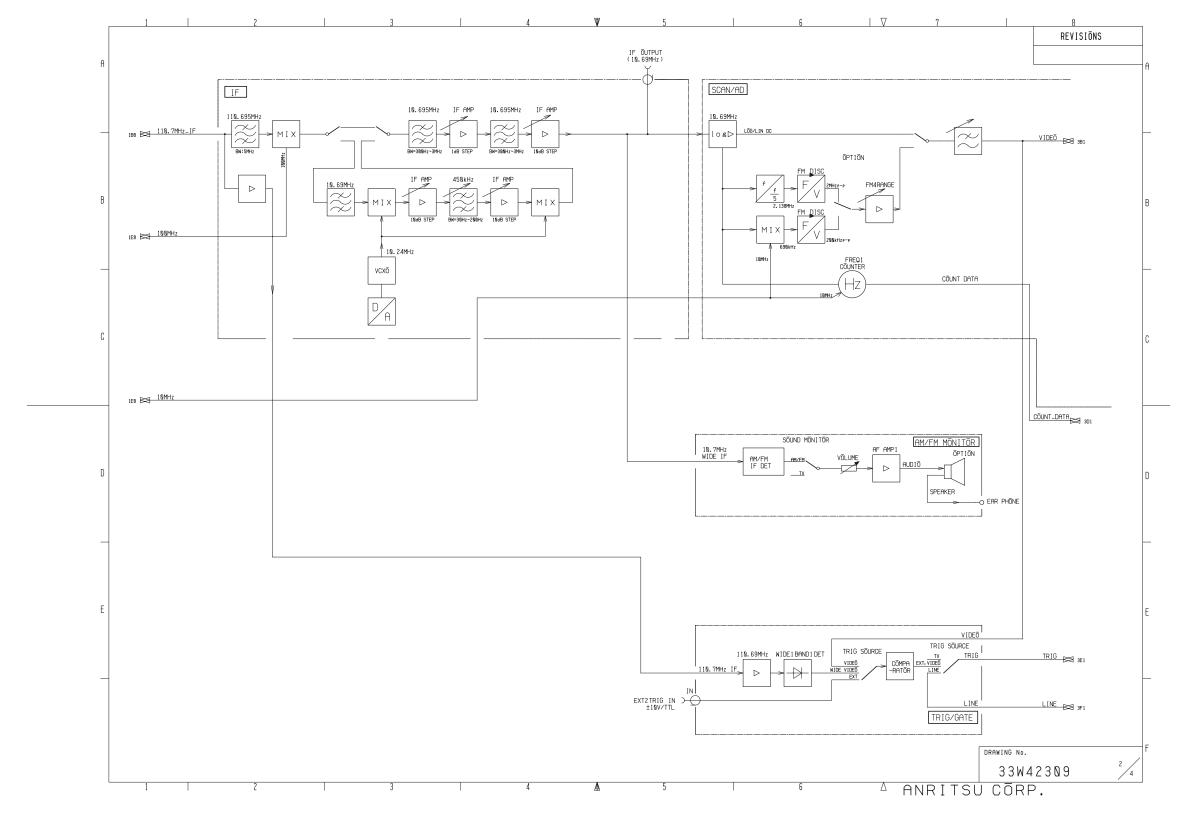


Fig. B-10 MS2668C Block Diagram (2/4)

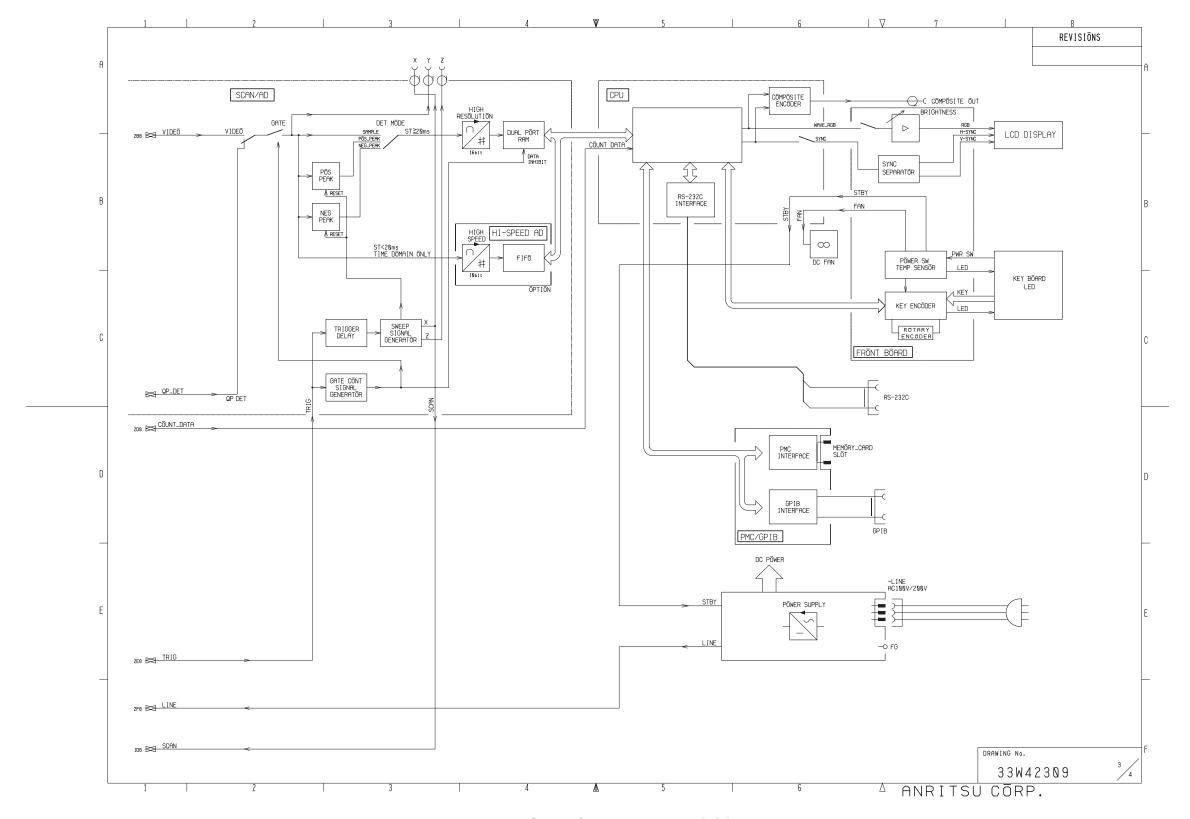


Fig. B-11 MS2668C Block Diagram (3/4)

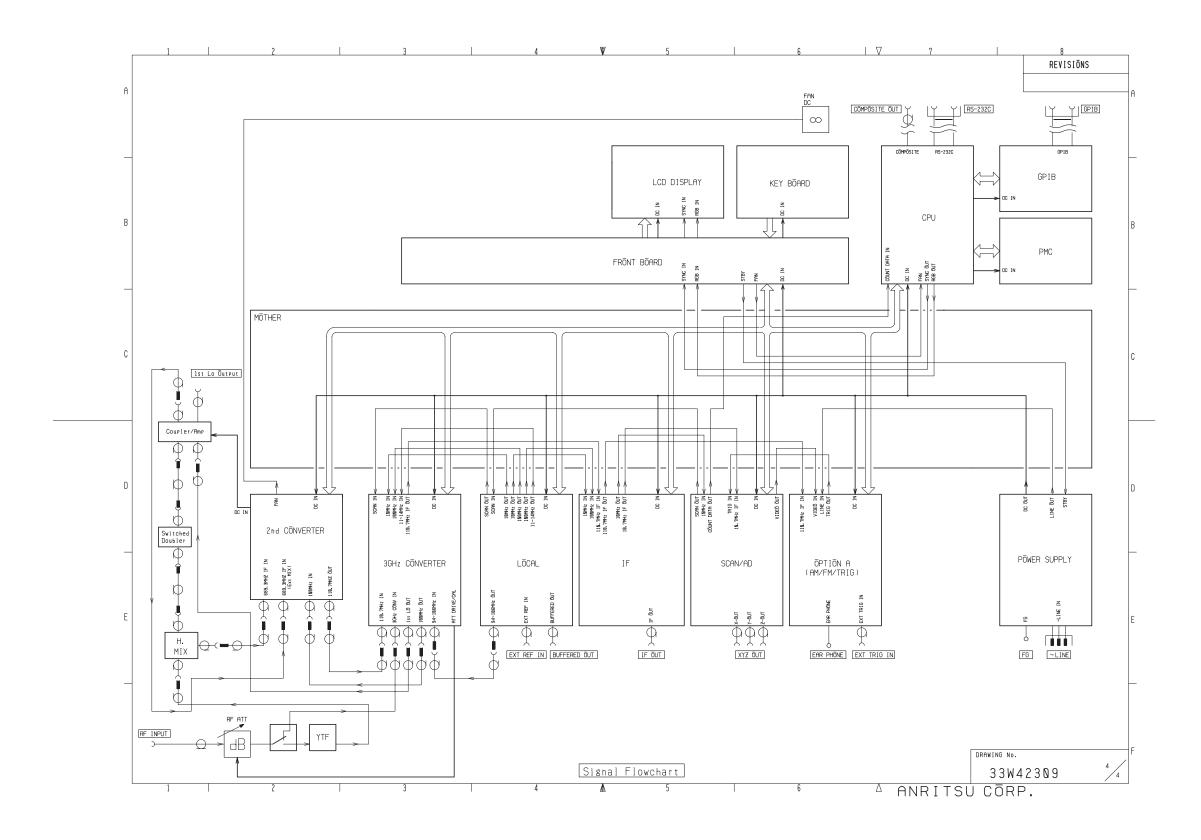


Fig. B-12 MS2668C Block Diagram (4/4)

APPENDIX C PERFORMANCE TEST RECORD

MS2665C Performance Test Record	C-3
MS2667C Performance Test Record	C-15
MS2668C Performance Test Record	C-27

MS2665C Performance Test Record		(1/12)
	NO.	
SERIAL NO	DATE	
OPTIONS		
Date		
Tested by		
Ambient temparature°C		
Relative humidity %		
Powermains line voltage (nominal) AC V		
Powermains line frequency (nominal) Hz		

Test Equipment used

Descriptions	MODEL NO.	Cal Date
Synthesized signal generator		
Synthesized Sweeper		
Attenuator		
Power meter		
Power senser		
Power senser		
50Ω Termination		
Low pass filter		
Frequency counter		
Frequency standard		

SERIAL NO.	DATE	
Tested by		

Reference oscillator stability

• Frequency stability (aging rate)

Description	Min.	Result	Max.
Frequency stability/day	-2×10 ⁻⁸		+2×10 ⁻⁸

• Temparature stability

Description	Min.	Result	Max.
Temparature stability	-5×10 ⁻⁸		+5×10 ⁻⁸

Frequency readout accuracy

Signal	Center	Span	Dand	Center frequency		
generator	frequency	frequency	Band	Minimum value	Maker value	Maximam value
	10kHz			499.999 66MHz		500.000 34MHz
500MHz	500MHz	200kHz	0(1)	499.995 2MHz		500.004 8MHz
	100MHz			497.6MHz		502.4MHz
	10kHz			4.999 999 55GHz		5.000 000 45GHz
5GHz	5GHz	200kHz	1-(1)	4.999 994 8GHz		5.000 005 2GHz
	100MHz			4.997 6GHz		5.002 4GHz
	10kHz			7.499 999 50GHz		7.500 000 50GHz
7.5GHz	7.5GHz	200kHz	1+(1)	7.499 994 8GHz		7.500 005 2GHz
	100MHz			7.497 6GHz		7.502 4GHz
	20kHz			11.999 999 06GHz		12.000 000 94GHz
12GHz	12GHz	200kHz	2+ (2)	11.999 994 6GHz		12.000 005 4GHz
120112	100MHz	200KHZ	21 (2)	11.997 6GHz		12.002 4GHz
	1GHz			11.976GHz		12.024GHz
	30kHz			19.999 998 55GHz		20.000 001 45GHz
20GHz	20GHz	200kHz	3+ (3)	19.999 994 3GHz		20.000 005 7GHz
200112	100MHz	ZOOKIIZ		19.997 6GHz		20.002 4GHz
	1GHz			19.976GHz		20.024GHz

1	2	/1	1	1
(1	/Ι	_/	١

SERIAL NO	DATE
Tested by	

Frequency span readout

MS26	665C	Signal generator			Results	
Center frequency	Span	f ₁	f ₂	Minimum value	$\frac{f_2' - f_1'}{0.8}$	Maximum value
_ · · ·	20kHz	0.999 99 2GHz	1.000 008GHz	19.5kHz		20.5kHz
	200kHz	0.999 92GHz	1.000 08GHz	195kHz		205kHz
1GHz	2MHz	0.999 2GHz	1.000 8GHz	1.95MHz		2.05MHz
IGHZ	10MHz	0.996GHz	1.004GHz	9.75MHz		10.25MHz
	100MHz	0.96GHz	1.04GHz	97.5MHz		102.5MHz
	2GHz	0.2GHz	1.8GHz	1.95GHz		2.05GHz
	100kHz	4.21GHz	4.29GHz	97.5MHz		102.5MHz
4.25GHz	1MHz	3.85GHz	4.65GHz	0.975GHz		1.025GHz
	8.5MHz	0.85GHz	7.65GHz	8.2875GHz		8.7125GHz
	100MHz	10.56GHz	10.64GHz	97.5MHz		102.5MHz
10.6GHz	1GHz	10.2GHz	11.0GHz	0.975GHz		1.025GHz
	21.2GHz	2.12GHz	19.08GHz	20.67GHz		21.73GHz

/ 4	14	0
//	/	''

SERIAL NO.	DATE
Tested by	

Resolution bandwidth accuracy

Resolution Bandwidth	Span	Bandwidth (3dB)	Specification
3MHz	10MHz		±30%
1MHz	5MHz		±20%
300kHz	500kHz		±20%
100kHz	200kHz		±20%
30kHz	50kHz		±20%
10kHz	20kHz		±20%
3kHz	5kHz		±20%
1kHz	2kHz		±20%

(5/12)

SERIAL NO.	DATE
Tested by	-

Resolution bandwidth selectivity

Resolution Bandwidth	Frequency Span	Video Bandwidth	60dB BW	3dB BW	60dB BW/ 3dB BW
3MHz	100MHz	100Hz			≤15
1MHz	20MHz	100Hz			≤15
300kHz	10MHz	100Hz			≤15
100kHz	5MHz	100Hz			≤15
30kHz	1MHz	100Hz			≤15
10kHz	200kHz	100Hz			≤15
3kHz	100kHz	100Hz			≤15
1kHz	50kHz	100Hz			≤15

Sideband phase noise

Center frequency	Results	Specification
2GHz		≤–95dBc/Hz
6GHz		≤–95dBc/Hz
10GHz		≤–89dBc/Hz
20GHz		≤–85.5dBc/Hz

(6/12)

SERIAL NO.	DATE
Tested by	

Frequency measurement accuracy

Signal generator	Measurement Resokution	Min.	Results	Max.
500MHz	1Hz	499.999 989MHz		500.000 011MHz
500MHz	10Hz	499.999 98MHz		500.000 02MHz
500MHz	100Hz	499.999 9MHz		500.000 1MHz
500MHz	1kHz	499.999MHz		500.001MHz

Amplitude display accuracy

• Log scale Fidelity

• Log scale Fidelity	1		T	
ATT setting (dB)	А	В	Error (dB)=A+B	Spec
	ATT	Δ marker		
	Calibration factor (dB)	readout (dB)		
0	0 (reference)		0 (reference)	0 (reference)
5				±0.4dB
10				±0.4dB
15				±0.4dB
20				±0.4dB
25				±1.0dB
30				±1.0dB
35				±1.0dB
40				±1.0dB
45				±1.0dB
50				±1.0dB
55				±1.0dB
60				±1.0dB
65				±1.0dB
70				±1.0dB
75				±1.5dB
80				±1.5dB
85				±1.5dB
90				±2.5dB

7	/1	2
(/	/Ι	2)

SERIAL NO.	DATE
Tested by	

Frequency response	
--------------------	--

Band	Frequency	Calibration valve (dBm)	Marker readout (dB)	Deviation (dB)
	100MHz	0	0 (reference)	0 (reference)
0	500MHz			
	1GHz			
	1.5GHz			
	2GHz			
	3GHz			
	3.1GHz			
	4GHz			
1-	5GHz			
	6GHz			
	6.5GHz			
	6.5GHz			
1+	7GHz			
	7.5GHz			
	8GHz			
	8GHz			
	9GHz			
	10GHz			
2+	11GHz			
2+	12GHz			
	13GHz			
	14GHz			
	15GHz			
3+	15.2GHz			
	16GHz			
	17GHz			
	18GHz			
	19GHz			
	20GHz			
	21GHz			

MS2665C	Performance	Test Record
---------	-------------	-------------

(8/12)

SERIAL NO.	DATE
Tested by	
Reference level accuracy	

Reference Level setting	Marker readout	Correction factor of ATT	Error*1	Spec.
0dBm				±0.4dB
-10dBm				±0.4dB
-20dBm				±0.4dB
-30dBm				±0.4dB
–40dBm				±0.4dB
-50dBm				±0.75dB
-60dBm				±0.75dB
-70dBm				±1.5dB
-80dBm				±1.5dB

^{*1:} Calculate the "Error" from the following equation

Error=Marker readout-Reference Level set value-corection factor of ATT

(9/1/)

SERIAL NO.	DATE
Tested by	-

Average noise level

MS2665C setting			Average	e noise level
START FREQ	STOP FREQ	Band	Marker readout (dBm)	Specification
1MHz	10MHz	0		-115dBm
10MHz	100MHz	0		-115dBm
100MHz	1GHz	0		-115dBm
1GHz	2GHz	0		-113.5 to -112dBm
2GHz	3.1GHz	1-		-112 to -110.35dBm
2.92GHz	4GHz	1-		-110dBm
4GHz	5GHz	1-		-110dBm
5GHz	6GHz	1-		-110dBm
6GHz	6.5GHz	1-		-110dBm
6.4GHz	7GHz	1+		-110dBm
7GHz	8.1GHz	1+		-110dBm
8GHz	9GHz	2+		-102dBm
9MHz	10GHz	2+		-102dBm
10GHz	11GHz	2+		-102dBm
11GHz	12GHz	2+		-102dBm
12GHz	13GHz	2+		-102dBm
13GHz	14GHz	2+		-102dBm
14MHz	15.3GHz	2+		-102dBm
15.2GHz	16GHz	3+		-98dBm
16GHz	17GHz	3+		-98dBm
17GHz	18GHz	3+		–98dBm
18GHz	19GHz	3+		-98dBm
19GHz	20GHz	3+		-98dBm
20GHz	21.2GHz	3+		-98dBm

(10/12)

SERIAL NO	DATE
Tested by	

Second harmonic distortion

Signal	Second harmonic distortion
generator	(dB)
10.1MHz	
100.1MHz	
500.1MHz	
800.1MHz	
1000.1MHz	
1499.9MHz	
2000.1MHz	
2500.1MHz	
5000.1MHz	

71	1	/1	7)
(1	1	/ 1	4)

SERIAL NO	DATE
Tested by	-

Resolution bandwidth switching uncertainty

MS2665C setting		Δ marker readout	Charification	
RBW	SPAN	Δ marker readout	Specification	
1kHz	5kHz		±0.3dB	
3kHz	15kHz	0.0dB	Reference	
10kHz	50kHz		±0.3dB	
30kHz	150kHz		±0.3dB	
100kHz	500kHz		±0.3dB	
300kHz	1.5MHz		±0.3dB	
1MHz	5MHz		±0.3dB	
3MHz	10MHz		±0.4dB	

(12/12)

SERIAL NO.	DATE
Tested by	

Input attenuator switching uncertainty

	665C ting						
Reference Level	ATT	Attenuator setting	Correction Factor of attenuator	Marker readout	Error	Deviation	Spec.
-10dBm	50dB	0dB	dB	dBm	dB	dB	±0.3dB
-20dBm	40dB	10dB	dB	dBm	dB	dB	±0.3dB
-30dBm	30dB	20dB	dB	dBm	dB	dB	±0.3dB
-40dBm	20dB	30dB	dB	dBm	dB	dB	±0.3dB
-50dBm	10dB	40dB	dB	dBm	dB	0dB (reference)	0dB (reference)
-60dBm	0dB	50dB	dB	dBm	dB	dB	±0.3dB

Sweep time and Time span accuracy

• Sweep time

MS2665C setting	Signal generator		
SWEEP TIME	AM Modulation frequency	SWT Time (calculated)	90% of specification min/max
50ms	400Hz	s	38.25ms/51.75ms
200ms	100Hz	S	153ms/207ms
2s	10Hz	S	1.53s/2.07s
20s	1Hz	S	15.3s/20.7s
200s	0.1Hz	S	99s/261s

• Time span accuracy

MS2665C setting	Signal generator		
	-		000/ / '/'
Time	AM Modulation	∆ Marker	90% of specification
span	frequency	readout	min/max
20ms	1kHz	S	17.82ms /18.18ms
200ms	100Hz	S	178.2ms /181.8ms
2s	10Hz	S	1.782s /1.818s
20s	1Hz	S	17.82s /18.18s
200s	0.1Hz	s	178.2s /181.8s

MS2667C Performance Test Record		
	NO.	
SERIAL NO	DATE	
OPTIONS		
Date		
Tested by		
Ambient temparature°C		
Relative humidity %		
Powermains line voltage (nominal) AC V		
Powermains line frequency (nominal) Hz		

Test Equipment used

Descriptions	MODEL NO.	Cal Date
Synthesized signal generator		
Synthesized Sweeper		
Attenuator		
Power meter		
Power senser		
Power senser		
50Ω Termination		
Low pass filter		
Frequency counter		
Frequency standard		

SERIAL NO.	DATE	
Tested by		

Reference oscillator stability

• Frequency stability (aging rate)

Description	Min.	Result	Max.
Frequency stability/day	-2×10 ⁻⁸		+2×10 ⁻⁸

• Temparature stability

Description	Min.	Result	Max.
Temparature stability	-5×10 ⁻⁸		+5×10 ⁻⁸

Frequency readout accuracy

Signal	Center		Band	Center frequency		y
generator	frequency	Span	(Mixing order)	Minimum value	Maker value	Maximum value
		10kHz		499.999 5MHz		500.000 5MHz
500MHz	500MHz	200kHz	0(1)	499.99MHz		500.01MHz
		100MHz		495MHz		505MHz
		10kHz		4.999 999 4GHz		5.000 000 6GHz
5GHz	5GHz	200kHz	1-(1)	4.999 99GHz		5.000 01GHz
		100MHz		4.995GHz		5.05GHz
		10kHz		7.499 999 3GHz		7.500 000 7GHz
7.5GHz	7.5GHz	200kHz	1+(1)	7.499 99GHz		7.500 01GHz
		100MHz		7.495GHz		7.505GHz
		20kHz		11.999 998 8GHz		12.000 001 2GHz
12GHz	12GHz	200kHz	2+ (2)	11.999 99GHz		12.000 01GHz
120112	120112	100MHz	2+ (2)	11.995GHz		12.005GHz
		1GHz		11.95GHz		12.05GHz
		30kHz		19.999 998 1GHz		20.000 001 9GHz
20GHz	20GHz	200kHz	3+ (3)	19.999 99GHz		20.000 01GHz
200112	200112	100MHz	3+ (3)	19.995GHz		20.005GHz
		1GHz		19.95GHz		20.05GHz
		10kHz		28.999 998 9GHz		29.000 001 1GHz
29GHz	29GHz	200kHz	4+(4)	28.999 99GHz		29.000 01GHz
		100MHz	(.)	28.996GHz		29.005GHz
		1GHz		28.95GHz		29.05GHz

1	2	/1	1	1
(1	/Ι	_/	١

SERIAL NO	DATE
Tested by	

Frequency span readout accuracy

MS2	667C	67C Signal generator		Results		
Center frequency	Span	f ₁	f ₂	Minimum value	$\frac{f_2' - f_1'}{0.8}$	Maximum value
	20kHz	0.999 992GHz	1.000 008GHz	19.5kHz		21kHz
	200kHz	0.999 92GHz	1.000 08GHz	190kHz		210kHz
1GHz	2MHz	0.999 2GHz	1.000 8GHz	1.9MHz		2.1MHz
TOTIZ	10MHz	0.996GHz	1.004GHz	9.5MHz		10.5MHz
	100MHz	0.96GHz	1.04GHz	95MHz		105MHz
	2GHz	0.2GHz	1.8GHz	1.9GHz		2.1GHz
	100MHz	4.21GHz	4.29GHz	95MHz		105MHz
4.25GHz	1GHz	3.85GHz	4.65GHz	0.95GHz		1.05GHz
	8.5GHz	0.85GHz	7.65GHz	8.075GHz		8.925GHz
	100MHz	9.96GHz	10.04GHz	95MHz		105MHz
10.6GHz	1GHz	9.6GHz	10.4GHz	0.95GHz		1.05GHz
	20GHz	2GHz	18GHz	19GHz		21GHz
	100MHz	14.96GHz	15.04GHz	95MHz		105MHz
15GHz	1GHz	14.6GHz	15.4GHz	0.95GHz		1.05GHz
	30GHz	1.5GHz	28.5GHz	28.5GHz		31.5GHz

(4/12)

SERIAL NO.	DATE
Tested by	

Resolution bandwidth accuracy

Resolution Bandwidth	Span	Bandwidth (3dB)	Specification
3MHz	10MHz		±30%
1MHz	5MHz		±20%
300kHz	500kHz		±20%
100kHz	200kHz		±20%
30kHz	50kHz		±20%
10kHz	20kHz		±20%
3kHz	5kHz		±20%
1kHz	2kHz		±20%

(5/12)

SERIAL NO.	DATE
Tested by	

Resolution bandwidth selectivity

Resolution Bandwidth	Frequency Span	Video Bandwidth	60dB BW	3dB BW	60dB BW/ 3dB BW
3MHz	100MHz	100Hz			≤15
1MHz	20MHz	100Hz			≤15
300kHz	10MHz	100Hz			≤15
100kHz	5MHz	100Hz			≤15
30kHz	1MHz	100Hz			≤15
10kHz	200kHz	100Hz			≤15
3kHz	100kHz	100Hz			≤15
1kHz	50kHz	100Hz			≤15

Sideband phase noise

Center frequency	Results	Specification
2GHz		≤–95dBc/Hz
6GHz		≤–95dBc/Hz
10GHz		≤–89dBc/Hz
20GHz		≤–85.5dBc/Hz
26.5GHz		≤–83dBc/Hz

(6/12)

SERIAL NO.	DATE
Tested by	_

Frequency measurement accuracy

Signal generator	Measurement Resokution	Min.	Results	Max.
500MHz	1Hz	499.999 989MHz		500.000 011MHz
500MHz	10Hz	499.999 98MHz		500.000 02MHz
500MHz	100Hz	499.999 9MHz		500.000 1MHz
500MHz	1kHz	499.999MHz		500.001MHz

Amplitude display accuracy

• Log scale Fidelity

ATT setting (dB)	А	В	Error (dB)=A+B	Spec
	ATT Calibration factor (dB)	Δ marker readout (dB)		
0	0 (reference)		0 (reference)	0 (reference)
5				±0.4dB
10				±0.4dB
15				±0.4dB
20				±0.4dB
25				±1.0dB
30				±1.0dB
35				±1.0dB
40				±1.0dB
45				±1.0dB
50				±1.0dB
55				±1.0dB
60				±1.0dB
65				±1.0dB
70				±1.0dB
75				±1.5dB
80				±1.5dB
85				±1.5dB
90				±2.5dB

/-	-	1.4	_	`
- (-	7 /	7	′)	١
٠,	//	- 1	_	

SERIAL NO.	DATE
Tested by	

Frequency response

Band	Frequency	Calibration valve (dBm)	Marker level (dB)	Deviation (dB)
	100MHz	0	0 (reference)	0 (reference)
	500MHz			
0	1GHz			
	1.5GHz			
	2GHz			
	3GHz			
	3.1GHz			
	4GHz			
1-	5GHz			
	6GHz			
	6.5GHz			
	6.5GHz			
1+	7GHz			
1+	7.5GHz			
	8GHz			
	8GHz			
	9GHz			
	10GHz			
2+	11GHz			
2+	12GHz			
	13GHz			
	14GHz			
	15GHz			
	15.2GHz			
	16GHz			
	17GHz			
3+	18GHz			
	19GHz			
	20GHz			
	21GHz			
	22GHz			
	23GHz			
	24GHz			
	25GHz			
4+	26GHz			
4+	27GHz			
	28GHz			
	29GHz			
	30GHz			

(8/12)

SERIAL NO.	 DATE	
Tested by		
Reference level accuracy		

Reference Level setting	Marker readout	Correction factor of ATT	Error*1	Spec.
0dBm				±0.4dB
-10dBm				±0.4dB
-20dBm				±0.4dB
-30dBm				±0.4dB
-40dBm				±0.4dB
-50dBm				±0.75dB
-60dBm				±0.75dB
-70dBm				±1.5dB
-80dBm				±1.5dB

^{*1:} Calculate the "Error" from the following equation

Error=Marker readout-Reference Level set value-corection factor of ATT

10	/4	^ \	
ſЧ	/ I	٠,١	

SERIAL NO.	DATE
Tested by	_

Average noise level

MS2667C setting			Average	e noise level
START FREQ	STOP FREQ	Band	Marker readout (dBm)	Specification
1MHz	10MHz	0		-115dBm
10MHz	100MHz	0		-115dBm
100MHz	1GHz	0		-115dBm
1GHz	2GHz	0		-113.5 to -112dBm
2GHz	3.1GHz	0		-112 to -110.35dBm
3.1GHz	4GHz	1-		-110dBm
4GHz	5GHz	1-		-110dBm
5GHz	6GHz	1-		-110dBm
6GHz	6.5GHz	1-		-110dBm
6.4GHz	7GHz	1+		-110dBm
7GHz	8.1GHz	1+		-110dBm
8GHz	9GHz	2+		-102dBm
9MHz	10GHz	2+		-102dBm
10GHz	11GHz	2+		-102dBm
11GHz	12GHz	2+		-102dBm
12GHz	13GHz	2+		-102dBm
13GHz	14GHz	2+		-102dBm
14MHz	15.3GHz	2+		-102dBm
15.2GHz	16GHz	3+		-98dBm
16GHz	17GHz	3+		-98dBm
17GHz	18GHz	3+		-98dBm
18GHz	19GHz	3+		-98dBm
19GHz	20GHz	3+		-98dBm
20GHz	21GHz	3+		-98dBm
21MHz	22.4GHz	3+		-98dBm
22.3GHz	23GHz	4+		–91dBm
23GHz	24GHz	4+		–91dBm
24GHz	25GHz	4+		–91dBm
25GHz	26GHz	4+		–91dBm
26GHz	27GHz	4+		–91dBm
27GHz	28GHz	4+		–91dBm
28GHz	29GHz	4+		–91dBm
29GHz	30GHz	4+		–91dBm

(10/12)

SERIAL NO	DATE
Tested by	

Second harmonic distortion

Signal	Second harmonic distortion
generator	(dB)
10.1MHz	
100.1MHz	
500.1MHz	
800.1MHz	
1000.1MHz	
1499.9MHz	
2000.1MHz	
2500.1MHz	
5000.1MHz	

-	4	4	14	0
- (/ I	•
١.	1	1	/ 1	. 4

SERIAL NO	DATE
Tested by	

Resolution bandwidth switching uncertainty

MS2667	'C setting	Δ marker readout	Specification
RBW	SPAN	Δ marker readout	Specification
1kHz	5kHz		±0.3dB
3kHz	15kHz	0.0dB	Reference
10kHz	50kHz		±0.3dB
30kHz	150kHz		±0.3dB
100kHz	500kHz		±0.3dB
300kHz	1.5MHz		±0.3dB
1MHz	5MHz		±0.3dB
3MHz	10MHz		±0.4dB

(12/12)

SERIAL NO.	DATE
Tested by	

Input attenuator switching uncertainty

	667C ting						
Reference Level	ATT	Attenuator setting	Correction Factor of attenuator	Marker readout	Error	Deviation	Spec.
-10dBm	50dB	0dB	dB	dBm	dB	dB	±0.3dB
-20dBm	40dB	10dB	dB	dBm	dB	dB	±0.3dB
-30dBm	30dB	20dB	dB	dBm	dB	dB	±0.3dB
-40dBm	20dB	30dB	dB	dBm	dB	dB	±0.3dB
-50dBm	10dB	40dB	dB	dBm	dB	0dB (reference)	0dB (reference)
-60dBm	0dB	50dB	dB	dBm	dB	dB	±0.3dB

Sweep time and Time span accuracy

• Sweep time

MS2667C setting	Signal generator		
SWEEP TIME	AM Modulation frequency	SWT Time (calculated)	90% of specification min/max
50ms	400Hz	S	38.25ms/51.75ms
200ms	100Hz	s	153ms/207ms
2s	10Hz	S	1.53s/2.07s
20s	1Hz	S	15.3s/20.7s
200s	0.1Hz	S	99s/261s

• Time span accuracy

MS2667C	Signal	1	
setting	generator		
Setting			
Time	AM Modulation	∆ Marker	90% of specification
span	frequency	readout	min/max
20ms	1kHz	S	17.82ms/18.18ms
200ms	100Hz	S	178.2ms/181.8ms
2s	10Hz	S	1.782s/1.818s
20s	1Hz	S	17.82s/18.18s
200s	0.1Hz	S	178.2s/181.8s

MS2668C Performance Test Record		(1/12)
	NO.	
SERIAL NO	DATE	
OPTIONS		
Date		
Tested by		
Ambient temparature°C		
Relative humidity %		
Powermains line voltage (nominal) AC V		
Powermains line frequency (nominal) Hz		

Test Equipment used

Descriptions	MODEL NO.	Cal Date
Synthesized signal generator		
Synthesized Sweeper		
Attenuator		
Power meter		
Power senser		
Power senser		
50Ω Termination		
Low pass filter		
Frequency counter		
Frequency standard		

(2/12)

SERIAL NO	 DATE	
Tested by		

Reference oscillator stability

• Frequency stability (aging rate)

Description	Min.	Result	Max.
Frequency stability/day	-2×10 ⁻⁸		+2×10 ⁻⁸

• Temparature stability

Description	Min.	Result	Max.
Temparature stability	-5×10^{-8}		+5×10 ⁻⁸

Frequency readout accuracy

Signal	Center	0	Band	Ce	enter frequenc	у
generator	frequency	Span	(Mixing order)	Minimum value	Maker value	Maximum value
500MHz	500MHz	10kHz 200kHz 100MHz	0 (1)	499.999 5MHz 499.99MHz 495MHz		500.000 5MHz 500.01MHz 505MHz
5GHz	5GHz	10kHz 200kHz 100MHz	1-(1)	4.999 999 4GHz 4.999 99GHz 4.995GHz		5.000 000 6GHz 5.000 01GHz 5.05GHz
7.5GHz	7.5GHz	10kHz 200kHz 100MHz	1+ (1)	7.499 999 3GHz 7.499 99GHz 7.495GHz		7.500 000 7GHz 7.500 01GHz 7.505GHz
12GHz	12GHz	10kHz 200kHz 100MHz 1GHz	1+ (2)	11.999 999 3GHz 11.999 99GHz 11.995GHz 11.95GHz		12.000 000 7GHz 12.000 01GHz 12.005GHz 12.05GHz
20GHz	20GHz	10kHz 200kHz 100MHz 1GHz	2– (4)	19.999 999 1GHz 19.999 99GHz 19.995GHz 19.95GHz		20.000 000 9GHz 20.000 01GHz 20.005GHz 20.05GHz
29GHz	29GHz	10kHz 200kHz 100MHz 1GHz	3– (6)	28.999 998 9GHz 28.999 99GHz 28.995GHz 28.95GHz		29.000 001 1GHz 29.000 01GHz 29.005GHz 29.05GHz
39GHz	39GHz	10kHz 200kHz 100MHz 1GHz	3– (6)	38.999 998 7GHz 38.999 99GHz 38.995GHz 38.95GHz		39.000 001 3GHz 39.000 01GHz 39.005GHz 39.05GHz

10	/1	2	
13	/ I	'	١

SERIAL NO	DATE
Tested by	

Frequency span readout accuracy

MS2668C		Signal g	enerator	Results		
Center frequency	Span	f ₁ f ₂		Minimum value	$\frac{f_2' - f_1'}{0.8}$	Maximum value
	20kHz	0.999 992GHz	1.000 008GHz	19.5kHz		21kHz
	200kHz	0.999 92GHz	1.000 08GHz	190kHz		210kHz
1GHz	2MHz	0.999 2GHz	1.000 8GHz	1.9MHz		2.1MHz
TOTIZ	10MHz	0.996GHz	1.004GHz	9.5MHz		10.5MHz
	100MHz	0.96GHz	1.04GHz	95MHz		105MHz
	2GHz	0.2GHz	1.8GHz	1.9GHz		2.1GHz
	100MHz	4.21GHz	4.29GHz	95MHz		105MHz
4.25GHz	1GHz	3.85GHz	4.65GHz	0.95GHz		1.05GHz
	8.5GHz	0.85GHz	7.65GHz	8.075GHz		8.925GHz
	100MHz	9.96GHz	10.04GHz	95MHz		105MHz
10.6GHz	1GHz	9.6GHz	10.4GHz	0.95GHz		1.05GHz
	20GHz	2GHz	18GHz	19GHz		21GHz
	100MHz	19.96GHz	20.04GHz	95MHz		105MHz
20GHz	1GHz	19.6GHz	20.4GHz	0.95GHz		1.05GHz
	40GHz	2GHz	38GHz	38GHz		42GHz

(4/12)

SERIAL NO.	DATE
Tested by	

Resolution bandwidth accuracy

Resolution Bandwidth	Span	Bandwidth (3dB)	Specification
3MHz	10MHz		±30%
1MHz	5MHz		±20%
300kHz	500kHz		±20%
100kHz	200kHz		±20%
30kHz	50kHz		±20%
10kHz	20kHz		±20%
3kHz	5kHz		±20%
1kHz	2kHz		±20%

1	/1	2
()	/Ι	21

SERIAL NO.	DATE	
Tested by		

Resolution bandwidth selectivity

Resolution Bandwidth	Frequency Span	Video Bandwidth	60dB BW	3dB BW	60dB BW/ 3dB BW
3MHz	100MHz	100Hz			≤15
1MHz	20MHz	100Hz			≤15
300kHz	10MHz	100Hz			≤15
100kHz	5MHz	100Hz			≤15
30kHz	1MHz	100Hz			≤15
10kHz	200kHz	100Hz			≤15
3kHz	100kHz	100Hz			≤15
1kHz	50kHz	100Hz			≤15

Sideband phase noise

Center frequency	Results	Specification
2GHz		≤–95dBc/Hz
6GHz		≤–95dBc/Hz
10GHz		≤–89dBc/Hz
20GHz		≤–85.5dBc/Hz
26GHz		≤–83dBc/Hz
39GHz		≤–80dBc/Hz

(6/12)

SERIAL NO.	DATE
Tested by	

Frequency measurement accuracy

Signal generator	Measurement Resokution	Min.	Results	Max.
500MHz	1Hz	499.999 989MHz		500.000 011MHz
500MHz	10Hz	499.999 98MHz		500.000 02MHz
500MHz	100Hz	499.999 9MHz		500.000 1MHz
500MHz	1kHz	499.999MHz		500.001MHz

Amplitude display accuracy

• Log scale Fidelity

ATT setting (dB)	А	В	Error (dB)=A+B	Spec
	ATT Calibration factor (dB)	Δ marker readout (dB)		
0	0 (reference)		0 (reference)	0 (reference)
5				±0.4dB
10				±0.4dB
15				±0.4dB
20				±0.4dB
25				±1.0dB
30				±1.0dB
35				±1.0dB
40				±1.0dB
45				±1.0dB
50				±1.0dB
55				±1.0dB
60				±1.0dB
65				±1.0dB
70				±1.0dB
75				±1.5dB
80				±1.5dB
85				±1.5dB
90				±2.5dB

7	/1	2
(/	/Ι	۷)

SERIAL NO.	DATE
Tested by	_

Frequency response

Band	Frequency	Calibration valve (dBm)	Marker level (dB)	Deviation (dB)
	100MHz	0	0 (reference)	0 (reference)
	500MHz			
	1GHz			
	1.5GHz			
	2GHz			
	3GHz			
	3.1GHz			
1-	4GHz			
1-	5GHz			
	5.7GHz			
	5.5GHz			
1+	6.5GHz			
n=1	7.5GHz			
	8GHz			
	8GHz			
	9GHz			
1+	10GHz			
l	11GHz			
n=2	12GHz			
	13GHz			
	14GHz			
	15GHz			
	17GHz			
2-	19GHz			
n=4	21GHz			
11—4	23GHz			
	25GHz			
	26GHz			
	27GHz			
	29GHz			
	31GHz			
3-	33GHz			
n=6	35GHz			
	37GHz			
	39GHz			
	40GHz			

MS2668C	Performance	Test Record
---------	-------------	-------------

(8/12)

SERIAL NO.	 DATE	
Tested by		
Reference level accuracy		

Reference Level setting	Marker readout	Correction factor of ATT	Error*1	Spec.
0dBm				±0.4dB
-10dBm				±0.4dB
-20dBm				±0.4dB
-30dBm				±0.4dB
-40dBm				±0.4dB
-50dBm				±0.75dB
-60dBm				±0.75dB
-70dBm				±1.5dB
-80dBm				±1.5dB

^{*1:} Calculate the "Error" from the following equation

Error=Marker readout-Reference Level set value-corection factor of ATT

10	/1	2
(9)	/Ι	2.1

SERIAL NO.	DATE	
Tested by		

Average noise level

MS2	2668C setting		Average	e noise level
			Marker readout	
START FREQ	STOP FREQ	Band	(dBm)	Specification
1 MHz	10 MHz			−115 dBm
10 MHz	100 MHz			−115 dBm
100 MHz	1 GHz	0		−115 dBm
1 GHz	2 GHz			−113.5 to −112 dBm
2 GHz	3.1 GHz			-112 to -110.35 dBm
3.1 GHz	4 GHz			−114 dBm
4 GHz	5 GHz	1–		−114 dBm
5 GHz	5.7 GHz			−114 dBm
5.5 GHz	6.5 GHz	1+		−114 dBm
6.5 GHz	7.5 GHz			−114 dBm
7.5 GHz	8.1 GHz	(n=1)		−114 dBm
7.9 GHz	9 GHz			−113 dBm
9 GHz	10 GHz			−113 dBm
10 GHz	11 GHz	1+		−113 dBm
11 GHz	12 GHz	(n=2)		−113 dBm
12 GHz	13 GHz			−113 dBm
13 GHz	14.3 GHz			−113 dBm
14.1 GHz	15 GHz			−105 dBm
15 GHz	16 GHz			-105 dBm
16 GHz	17 GHz			-105 dBm
17 GHz	18 GHz			−105 dBm
18 GHz	19 GHz			−105 dBm
19 GHz	20 GHz	2-		−105 dBm
20 GHz	21 GHz	(n=4)		−105 dBm
21 GHz	22.4 GHz			−105 dBm
22.3 GHz	23 GHz			−105 dBm
23 GHz	24 GHz			−105 dBm
24 GHz	25 GHz			−105 dBm
25 GHz	26.5 GHz			−105 dBm
26.2 GHz	27 GHz			−101 dBm
27 GHz	28 GHz			-101 dBm
28 GHz	29 GHz	1		-101 dBm
29 GHz	30 GHz	1		-101 dBm
30 GHz	31 GHz	1		-101 dBm
31 GHz	32 GHz	3–		-101 dBm
32 GHz	33 GHz	(n=6)		-101 dBm
33 GHz	34 GHz	1		-101 dBm
34 GHz	35 GHz	1		-101 dBm
35 GHz	36 GHz			-101 dBm
36 GHz	38 GHz			-101 dBm
38 GHz	40 GHz	1		−101 dBm

(10/12)

SERIAL NO	DATE
Tested by	

Second harmonic distortion

Signal	Second harmonic distortion
generator	(dB)
10.1MHz	
100.1MHz	
500.1MHz	
800.1MHz	
1000.1MHz	
1499.9MHz	
2000.1MHz	
2500.1MHz	
5000.1MHz	

/	1	1	1.	1 /	10
1			/		2)
١.	1	1	Ι.	1 4	~ ,

SERIAL NO	DATE
Tested by	

Resolution bandwidth switching uncertainty

MS2667C setting		Δ marker readout	Charification	
RBW	SPAN	Δ marker readout	Specification	
1kHz	5kHz		±0.3dB	
3kHz	15kHz	0.0dB	Reference	
10kHz	50kHz		±0.3dB	
30kHz	150kHz		±0.3dB	
100kHz	500kHz		±0.3dB	
300kHz	1.5MHz		±0.3dB	
1MHz	5MHz		±0.3dB	
3MHz	10MHz		±0.4dB	

(12/12)

SERIAL NO.	DATE
Tested by	

Input attenuator switching uncertainty

1	668C ting						
Reference Level	ATT	Attenuator setting	Correction Factor of attenuator	Marker readout	Error	Deviation	Spec.
-10dBm	50dB	0dB	dB	dBm	dB	dB	±0.3dB
-20dBm	40dB	10dB	dB	dBm	dB	dB	±0.3dB
-30dBm	30dB	20dB	dB	dBm	dB	dB	±0.3dB
-40dBm	20dB	30dB	dB	dBm	dB	dB	±0.3dB
-50dBm	10dB	40dB	dB	dBm	dB	0dB (reference)	0dB (reference)
-60dBm	0dB	50dB	dB	dBm	dB	dB	±0.3dB

Sweep time and Time span accuracy

• Sweep time

MS2668C setting	Signal generator		
SWEEP TIME	AM Modulation frequency	SWT Time (calculated)	90% of specification min/max
50ms	400Hz	s	38.25ms/51.75ms
200ms	100Hz	s	153ms/207ms
2s	10Hz	s	1.53s/2.07s
20s	1Hz	S	15.3s/20.7s
200s	0.1Hz	s	99s/261s

• Time span accuracy

MS2668C setting	Signal generator		
Time	AM Modulation	Δ Marker	90% of specification
span	frequency	readout	min/max
20ms	1kHz	S	17.82ms/18.18ms
200ms	100Hz	S	178.2ms/181.8ms
2s	10Hz	S	1.782s/1.818s
20s	1Hz	S	17.82s/18.18s
200s	0.1Hz	S	178.2s/181.8s